The current status and future of theranostic Copper-64 radiopharmaceuticals

Document Type: Review Article

Authors

Radioisotope Products and Radiation Technology Section, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria

Abstract

Copper-64 was produced in large scales and high specific activities in late 1990s’ using compact cyclotrons based by 64Ni(p,n)64Cu reaction and many radiopharmaceuticals developed since then by various groups based on interesting physicochemical and nuclear properties of the radionuclide. The unique emission of beta particles as well as positron particles offers a spectacular real therapeutic/diagnostic (“Theranostic”) radionuclide in nuclear medicine. Although the development of copper-64 radiopharmaceuticals continued with a slower rate in 2010s’ due to availability of 68Ga-tracers, however recent advances in application of therapeutic doses of 64Cu has emerged a new trend in the radiopharmaceutical development based on coppe-64. In this review, recent advances in the copper-64 theranostic radiopharmaceuticals including introduction of new chelating groups with enhanced stability as well as radiolabelling conditions as well as application of simple 64CuCl2 radiopharmaceutical as areal theranostic agent in human subjects are summarized. A proposed strategy for development of peptide based copper-64 radiopharmaceuticals with high and low dose therapeutic applications has been suggested.

Keywords

Main Subjects


  1. Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996 Nov;23(8):957-80.
  2. http://www.nucleonica.net/wiki/index.php?title=Decay_Schemes
  3. Matarrese M, Bedeschi P, Scardaoni R, Sudati F, Savi A, Pepe A, Masiello V, Todde S, Gianolli L, Messa C, Fazio F. Automated production of copper radioisotopes and preparation of high specific activity [(64)Cu]Cu-ATSM for PET studies. Appl Radiat Isot. 2010 Jan;68(1):5-13.
  4. Jalilian AR, Mirsadeghi L, Yari-kamrani Y, Rowshanfarzad P, Kamali-Dehghan M, Sabet M. Development of [64Cu]-DOTA-anti-CD20 for targeted therapy.J Radioanal Nucl Chem. 2007;274(3):563-568.
  5. Fazaeli Y, Jalilian AR, Kamali-Dehghan M, Bolourinovin F, Moradkhani S, Aslani G, Rahiminejad A, Ghannadi-Maragheh M. Production, quality control and imaging of 64Cu-ATSM in healthy rabbits for PET applications. Iran J Nucl Med 2010;18(2): 29-37.
  6. Fazaeli Y, Jalilian AR, Amini MM, Aboudzadeh M, Feizi S, Rahiminezhad A, Yousefi K. Preparation, nano purification, quality control and labeling optimization of [64Cu]-5,10,15,20-tetrakis (penta fluoro phenyl) porphyrin complex as a possible imaging agent. J Radioanal Nucl Chem. 2013;295(1):255-263.
  7. Alirezapour B, Jalilian AR, Rasaee MJ, Rajabifar S, Yavari K, Kamalidehghan M, Bolourinovin F, Aslani G. Optimized preparation and preliminary evaluation of [64Cu]–DOTA–trastuzumab for targeting ErbB2/Neu expression. J Radioanal Nucl Chem. 2013;295(2):1261-1271.
  8. Alirezapour B, Rasaee MJ, Jalilian AR, Rajabifar S, Mohammadnejad J, Paknejad M, Maadi E, Moradkhani S. Development of [⁶⁴Cu]-DOTA-PR81 radioimmunoconjugate for MUC-1 positive PET imaging. Nucl Med Biol. 2016 Jan;43(1):73-80.
  9. https://www-nds.iaea.org/radionuclides/nip64cu0.html, Last updated: September 2008.
  10. Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J Labelled Comp Radiopharm. 2014 Apr;57(4):224-30.
  11. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS, Blower PJ. Comparison of (64)Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem. 2012 May 16;23(5):1029-39.
  12. Wei L, Ye Y, Wadas TJ, Lewis JS, Welch MJ, Achilefu S, Anderson CJ. (64)Cu-labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol. 2009 Apr;36(3):277-85.
  13. Fournier P, Dumulon-Perreault V, Ait-Mohand S, Langlois R, Bénard F, Lecomte R, Guérin B. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging. EJNMMI Res. 2012 Feb 14;2:8.
  14. Liu S, Li D, Huang CW, Yap LP, Park R, Shan H, Li Z, Conti PS. The efficient synthesis and biological evaluation of novel bi-functionalized sarcophagine for (64)cu radiopharmaceuticals. Theranostics. 2012;2(6):589-96.
  15. Jalilian AR. An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications. Iran J Nucl Med. 2016;24(1):1-10.
  16. Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging. 2012 Feb;39 Suppl 1:S11-30.
  17. Jalilian AR, Rowshanfarzad P, Kamrani YY, Shafaii K, Mirzaii M.. Production and tumour uptake of [64Cu]Pyruvaldehyde-bis (N4-methylthiosemicarbazone) for PET and/or therapeutic purposes. Nucl Med Rev Cent East Eur. 2007;10(1):6-11.
  18. Jalilian AR, Sabet M, Rowshanfarzad P, Kamali-Dehghan M, Akhlaghi M, Mirzaii M. Production of Copper-64 Diacetyl-bis (N4-methylthiosemi-carbazone) for therapeutic purposes. World J Nucl Med. 2008;7:166-171.
  19. Handley MG, Medina RA, Nagel E, Blower PJ, Southworth R. PET imaging of cardiac hypoxia: opportunities and challenges. J Mol Cell Cardiol. 2011 Nov;51(5):640-50.
  20. Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GE. Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem. 2002 Mar 28;45(7):1420-31.
  21. Torres JB, Andreozzi EM, Dunn JT, Siddique M, Szanda I, Howlett DR, Sunassee K, Blower PJ. PET imaging of copper trafficking in a mouse model of Alzheimer disease. J Nucl Med. 2016 Jan;57(1):109-14.
  22. Yip C, Blower PJ, Goh V, Landau DB, Cook GJ. Molecular imaging of hypoxia in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2015 May;42(6):956-76.
  23. Medina RA, Mariotti E, Pavlovic D, Shaw KP, Eykyn TR, Blower PJ, Southworth R. 64Cu-CTS: A Promising Radiopharmaceutical for the Identification of Low-Grade Cardiac Hypoxia by PET. J Nucl Med. 2015 Jun;56(6):921-6.
  24. Hueting R, Kersemans V, Cornelissen B, Tredwell M, Hussien K, Christlieb M, Gee AD, Passchier J, Smart SC, Dilworth JR, Gouverneur V, Muschel RJ. A comparison of the behavior of (64)Cu-acetate and (64)Cu-ATSM in vitro and in vivo. J Nucl Med. 2014 Jan;55(1):128-34.
  25. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C, Gilbert FJ. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015 Jan 20;112(2):238-50.
  26. Takahashi N, Fujibayashi Y, Yonekura Y, Welch MJ, Waki A, Tsuchida T, Sadato N, Sugimoto K, Itoh H. Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med. 2000 Oct;14(5):323-8.
  27. Lohith TG, Kudo T, Demura Y, Umeda Y, Kiyono Y, Fujibayashi Y, Okazawa H. Pathophysiologic correlation between 62Cu-ATSM and 18F-FDG in lung cancer. J Nucl Med. 2009 Dec;50(12):1948-53.
  28. Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, Binderup T, Rasmussen P, Elema D, Klausen TL, Holm S, von Benzon E, Højgaard L, Kjaer A. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med. 2012 Aug;53(8):1207-15.
  29. Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, Maecke HR, Reubi JC, Weber WA. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist--from mice to men. Theranostics. 2014 Feb 1;4(4):412-9.
  30. Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn KR, Meares CF, Cutler PD, Welch MJ, Siegel BA. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med. 1995 Oct;36(10):1818-24.
  31. Persson M, Skovgaard D, Brandt-Larsen M, Christensen C, Madsen J, Nielsen CH, Thurison T, Klausen TL, Holm S, Loft A, Berthelsen AK, Ploug M, Pappot H, Brasso K, Kroman N, Højgaard L, Kjaer A. First-in-human uPAR PET: Imaging of cancer aggressiveness. Theranostics. 2015 Sep 13;5(12):1303-16.
  32. Capasso E, Valentini MC, Mirzaei S, Knoll P, Meleddu C. Radionuclide treatment with 64Cu-Cl2 in patients with progressive malignant gliomas. Eur J Nucl Med Mol Imaging. 2015;42(Suppl 1):S12.
  33. Capasso E, Durzu S, Piras S, Zandieh S, Knoll P, Haug A, Hacker M, Meleddu C, Mirzaei S. Role of (64)CuCl 2 PET/CT in staging of prostate cancer. Ann Nucl Med. 2015 Jul;29(6):482-8.
  34. Baharvand M, Manifar S, Akkafan R, Mortazavi H, Sabour S. Serum levels of ferritin, copper, and zinc in patients with oral cancer. Biomed J. 2014 Sep-Oct;37(5):331-6.
  35. Peng F. Positron emission tomography for measurement of copper fluxes in live organisms. Ann N Y Acad Sci. 2014 May;1314:24-31.
  36. https://clinicaltrials.gov/ct2/results?term=64Cu&Search=Search
  37. Persson M, Nedergaard MK, Brandt-Larsen M, Skovgaard D, Jørgensen JT, Michaelsen SR, Madsen J, Lassen U, Poulsen HS, Kjaer A. Urokinase-Type Plasminogen Activator Receptor as a Potential PET Biomarker in Glioblastoma. J Nucl Med. 2016 Feb;57(2):272-8.
  38. Charoenphun P, Paul R, Weeks A, Berry D, Shaw K, Mullen G. PET tracers for cell labelling with the complexes of copper 64 with lipophilic ligands. Eur J Nucl Med Mol Imaging. 2011;38:S294.
  39. Hueting R. Radiocopper for the imaging of copper metabolism. J Labelled Comp Radiopharm. 2014 Apr;57(4):231-8.
  40. Bandmann O, Weiss KH, Kaler SG. Wilson's disease and other neurological copper disorders. Lancet Neurol. 2015 Jan;14(1):103-13.
  41. Fodero-Tavoletti MT, Villemagne VL, Paterson BM, White AR, Li QX, Camakaris J, O'Keefe G, Cappai R, Barnham KJ, Donnelly PS. Bis(thiosemicarbazonato) Cu-64 complexes for positron emission tomography imaging of Alzheimer's disease. J Alzheimers Dis. 2010;20(1):49-55.
  42. Pal A, Siotto M, Prasad R, Squitti R. Towards a unified vision of copper involvement in Alzheimer's disease: a review connecting basic, experimental, and clinical research. J Alzheimers Dis. 2015;44(2):343-54.
  43. Vázquez MC, Martínez P, Alvarez AR, González M, Zanlungo S. Increased copper levels in in vitro and in vivo models of Niemann-Pick C disease. Biometals. 2012 Aug;25(4):777-86.
  44. Smpokou P, Samanta M, Berry GT, Hecht L, Engle EC, Lichter-Konecki U. Menkes disease in affected females: the clinical disease spectrum. Am J Med Genet A. 2015 Feb;167A(2):417-20.
  45. Sahlmann CO, Meller B, Bouter C, Ritter CO, Ströbel P, Lotz J, Trojan L, Meller J, Hijazi S. Biphasic ⁶⁸Ga-PSMA-HBED-CC-PET/CT in patients with recurrent and high-risk prostate carcinoma. Eur J Nucl Med Mol Imaging. 2016 May;43(5):898-905.
  46. Pyka T, Weirich G, Einspieler I, Maurer T, Theisen J, Hatzichristodoulou G, Schwamborn K, Schwaiger M, Eiber M. 68Ga-PSMA-HBED-CC PET for differential diagnosis of suggestive lung lesions in patients with prostate cancer. J Nucl Med. 2016 Mar;57(3):367-71.
  47. McMillan DD, Maeda J, Bell JJ, Genet MD, Phoonswadi G, Mann KA, Kraft SL, Kitamura H, Fujimori A, Yoshii Y, Furukawa T, Fujibayashi Y, Kato TA. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res. 2015 Sep;56(5):784-91.
  48. Connett JM, Anderson CJ, Guo LW, Schwarz SW, Zinn KR, Rogers BE, Siegel BA, Philpott GW, Welch MJ.Radioimmunotherapy with a 64Cu-labeled monoclonal antibody: a comparison with 67Cu. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6814-8.
  49. Valentini G, Panichelli P, Villano C, Pigotti G, Martini D. 64CuCl2: New theranostic agent.  Nucl Med Biol. 2014;41(7):638.