Radiation induced myocardial perfusion abnormalities in patients with left breast cancer: A prospective study with short and long term follow up

Mohammad Eftekhari¹, Forough Kalantari¹, Alireza Emami-Ardekani¹, Hamidreza Amini¹, Armaghan Fard-Esfahani¹, Babak Fallahi¹, Davood Beiki¹, Saeed Farzaneifar², Elham Kalantari¹, Arman Hasanazadeh-Rad¹, Mehrshad Abbasi²

¹Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
²Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
³Department of Internal Medicine, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

(Received 9 June 2016, Revised 9 September 2016, Accepted 10 September 2016)

ABSTRACT

Introduction: The external beam radiation therapy for patients with left breast cancer at the mastectomy site may cause myocardial perfusion abnormalities. We intended to study the change of these abnormalities at short and long term post radiotherapy follow up.

Methods: Twenty patients with left and 20 patients with right breast cancer comprised the exposed and control groups, respectively. The patients had low risk for coronary disease. They underwent myocardial perfusion scans (MPS) 3 years after the external beam radiation therapy at the bed of modified radical mastectomy. These subjects were recruited from two bigger cohorts with previously reported data of scans at 6 months. The scans were acquired after injections of about 20 mCi MIBI at peak pharmacologic stress and at rest. The change of the perfusion abnormalities by both visual assessment and quantifications (Autoquant) at the baseline and 3 years follow up time are compared between exposed and control patients.

Results: The exposed patients had more visual perfusion abnormality scores compared to control subjects (1.1±1.3 vs. 0.3±1.0; p=0.03). The indices of perfusion abnormality normalized in control subjects from baseline to follow up scans (p= 0.05 for summed difference score and p=0.04 for summed stress score). The difference of the perfusion abnormalities between the exposed and unexposed subjects remained unchanged along the 3 years of follow up.

Conclusion: The radiation induced myocardial perfusion abnormalities in patients with left breast cancer could cause permanent coronary disease over time.

Key words: Breast cancer; Radiotherapy; Myocardial perfusion scan; Coronary artery disease

Published: February, 2017
http://irjnm.tums.ac.ir

Corresponding author: Dr. Alireza Emami-Ardekani, Research Center for Nuclear Medicine, Shariati Hospital, North Kargar Ave. 1411713135, Tehran, Iran. E-mail: emami_a@sina.tums.ac.ir
INTRODUCTION

The breast cancer is the most commonly diagnosed cancer in women [1, 2]. While the incidence rates were stable, the cancer death rates decreased by 35% during the last couple of decades [1]. The decline in the death rate is due to early diagnosis [3] and use of appropriate radiation and chemotherapy options [4]. The radiation causes free radicals [5] and in contrast to its favorable outcomes it may cause vascular damage in the vasculature of the non-target organs [6-8]. When the surgical bed of the left breast following mastectomy is treated with external beam radiation, utmost caution is required to limit the radiation into the viscera [9]. Despite all effects, cardiac radiation is not negligible and the possibility of coronary damage is considerable [10]. We previously showed that the patients with left breast cancer demonstrate increased incidence of myocardial perfusion abnormalities 6 months after radiation [11]. To confirm whether these findings are temporary or permanent, in the current study we followed two subgroups from the cohorts of our previous study for a longer period of time.

METHODS

We recruited 40 cases from our previous study [11], 20 patients with left and 20 with right breast cancer. In brief all the participants underwent modified radical mastectomy and adjuvant radiotherapy and chemotherapy. The patients had low risk for cardiovascular events based on the Framingham score and none of them had history of diabetes mellitus, hypertension, hyperlipidemia, smoking or CCU admission. At baseline (i.e. 6 month post radiotherapy) myocardial perfusion scans were obtained from all these patients and the results are already reported elsewhere [11]. The patients were recruited for a follow up scan 2.5 years after the baseline scan. MPI was done based on the two day pharmacologic stress and next day rest protocol (Figure 1). For pharmacologic stress 0.56 mg/kg dipyridamole was injected slowly over 4 minutes and about 20 mCi 99mTc MIBI was injected 4 minutes afterward. The next day same amount of 99mTc MIBI was administered at rest condition. The imaging was done in cardiac cycle gated SPECT mode by a single head ADAC gamma camera (Argus, ADAC, Milpitas, CA) with 64x64 matrix sizes, 32 stops and about 25 seconds projection times. The visual interpreter had access to all quantifications of Cedars Cardiac Suite (QPS/QGS) and the ischemia was reported based on a 5 scale of 0 to 4 based on the severity of the perfusion defect and reversibility. The scans with any perfusion abnormality (i.e. any score above or equal to 0) was defined as abnormal scans.

The analyses are done in IBM SPSS (v 19) and the p values less than 0.05 were considered significant.

RESULTS

Patients aged 45.3±7.0 and 48.8±7.0 at baseline and follow up, respectively. Age at follow up scan were the same in case and control subjects and was respectively 47.9±6.9 and 49.6±7.2 (p=0.44). Left ventricular ejection fractions (LVEF) at baseline and follow up are 58.4±3.4 and 58.9±3.0, respectively. The indices of perfusion defects at baseline and follow up are presented in Table 1.

Among all indices visual scores are different between the exposed and unexposed subjects only at follow up scan (p=0.03). The summed stress scores and summed rest scores (indices of perfusion abnormality at stress and ischemia) improved significantly in unexposed subjects from baseline to follow up scan (p=0.04 and p= 0.05, respectively). The general linear model for repeated measurements indicated that there is remarkable difference between the exposed and control subjects at both baseline and follow up scans ($p<0.05$; partial eta=0.1) with no significant difference for the trend at these two time intervals ($p=0.6$; Figure 2).
Table 1: The perfusion indices of the patients at baseline and follow up.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Exposed</th>
<th>Total</th>
<th>P value<sup>a</sup></th>
<th>P value<sup>b</sup></th>
<th>P value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Score</td>
<td>0.7(1.5)</td>
<td>1.3(1.7)</td>
<td>1.0(1.6)</td>
<td>0.246</td>
<td>0.260</td>
<td>0.380</td>
</tr>
<tr>
<td>Summed Stress Score</td>
<td>0.9(1.3)</td>
<td>2.2(3.0)</td>
<td>1.6(2.4)</td>
<td>0.091</td>
<td>0.040</td>
<td>0.200</td>
</tr>
<tr>
<td>Summed Rest Score</td>
<td>0.3(0.9)</td>
<td>0.4(1.0)</td>
<td>0.3(0.9)</td>
<td>0.622</td>
<td>0.230</td>
<td>0.690</td>
</tr>
<tr>
<td>Summed Difference Score</td>
<td>0.7(0.9)</td>
<td>1.8(2.8)</td>
<td>1.2(2.1)</td>
<td>0.102</td>
<td>0.050</td>
<td>0.100</td>
</tr>
<tr>
<td>Follow up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Score</td>
<td>0.3(1.0)</td>
<td>1.1(1.3)</td>
<td>0.7(1.2)</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summed Stress Score</td>
<td>0.2(0.4)</td>
<td>1.1(2.1)</td>
<td>0.7(1.5)</td>
<td>0.071</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summed Rest Score</td>
<td>0.0(0.0)</td>
<td>0.5(1.1)</td>
<td>0.3(0.8)</td>
<td>0.056</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summed Difference Score</td>
<td>0.2(0.4)</td>
<td>0.6(1.2)</td>
<td>0.4(0.9)</td>
<td>0.168</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Numbers are mean and standard deviations in parentheses.
^a P values less than 0.05 indicate significant differences between exposed and unexposed patients.
^b P values less than 0.05 indicate significant change from baseline to follow up scan in control subjects.
^c P values less than 0.05 indicate significant change from baseline to follow up scan in exposed subjects.

DISCUSSION

The radiotherapy causes damage to all three layers of the coronary arteries [12]. It has been shown that the damage increases concordant with higher absorbed radiation doses in the myocardium [13-15]. On the other hand it is considered that the cardiac risk in these patients is a function of baseline risk of disease [16] and contradictory reports indicate no additional mortality and risk in these patients [17]. We previously documented that the patients with left breast cancer present myocardial perfusion abnormalities shortly after radiotherapy of the mastectomy site [11]. It was postulated that these changes are temporary and the coronary flow may stabilize after the acute phase of radiation. In the current study we documented that this perfusion abnormalities are permanent at the follow up scan of 3 years after the radiotherapy.

In a study, focal or annular myocardial FDG uptake, inconsistent with vascular territory, was seen after close follow-up for early diagnosis of possible cardiac events was recommended [18].

In irradiated coronary vessels asymptomatic disease is also prevalent. Marks et al showed increased incidence of myocardial perfusion abnormality (27-42%), 6 to 24 months following radiation therapy in asymptomatic patients with strong correlation of the left ventricle being in the field of radiotherapy [19]. These findings correlate with our study.

In contrast, a review Goethals et al. concluded that the risk of any cardiac disease post radiotherapy is low [20].

Certain chemotherapy agents are correlated with damage of the coronary artery vasculature and the heart [21-23]. The perfusion abnormalities denoted in the control subject who received treatment for right breast cancer may be interpreted as a side effect of this part of therapy [24]. We found improved...
perfusion abnormalities in patients with treated right breast cancer after 3 years compared to the baseline scan. This may point out that the abnormalities in these patients have been temporary and reserved afterward. The post chemotherapy changes and the stress of the patients at the time of diagnosis and surgery may contribute into this temporary finding. The permanent perfusion abnormalities in the patients after left breast radiotherapy may illustrate that the unique cause of such remaining perfusion defects are as a consequences of radiation to the myocardium.

Since the process of atherogenesis is considered to take longer than the time limit of this study is longer than the period of this study [25], we may consider the damage to the coronary vasculature after radiation via another different mechanism than atherosclerosis. Fibrosis and tissue necrosis could contribute to the damage and subsequent atherogenesis [26, 27]. A shortcoming of this study is inability to follow the patients for longer time for any possible coronary artery disease. Nevertheless further epidemiological studies in patients following radiation therapy may provide better information. While the radiation to the surgical bed is an inevitable part of the treatment of breast cancer, the radiation to the heart should be minimized. This might be done with optimal dose management in IMRT [28].

CONCLUSION

It was postulated that the noticed changes are temporary and the coronary flow may stabilize after the acute phase of radiation. In the current study we documented that the myocardial perfusion abnormalities are permanent at the follow ups up to 3 years after the radiotherapy. Also we found improved perfusion abnormalities in patients received right breast radiation treatment after 3 years compared to the baseline studies. Regarding the susceptibility of cardiac damage and perfusion abnormalities in patients treated with radiation in left hemithorax and the fact that this changes may result in clinically significant coronary artery disease, it is reasonable to pay special attention to radiation planning as far as the dose and limits of radiation field are concerned. Also it is better to consider periodical follow up even in clinically asymptomatic post radiation patients.

Acknowledgments

This research has been part of a nuclear medicine specialty thesis and supported by Tehran University of Medical Sciences, Tehran, Iran, grant no. 25354.

REFERENCES

