Administration of 99mTc-DTPA in combination with doxorubicin alters the radiopharmaceutical biodistribution in rats

Document Type: Original Article

Authors

1 National University of Sciences and Technology (NUST), Islamabad, Pakistan

2 Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan

3 Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan

4 Center for Nuclear Medicine and Radiotherapy (CENAR), Quetta, Pakistan

Abstract

Introduction:Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent used as a radiopharmaceutical compound, 99mTc-DTPA, for renography. Doxorubicin (DOX) on the other hand is an effective chemotherapy drug used to treat a variety of solid malignancies.  Both 99mTc-DTPA and DOX may be used in close succession in patients undergoing DOX based chemotherapy to evaluate renal function. This study aims to investigate the possible alteration in the biodistribution of 99mTc-DTPA when given in combination with DOX in rats.
Methods: The study was divided in two arms; a control group (n=10) where 99mTc-DTPA alone and the experimental group (n=30) where DOX was injected prior to 99mTc-DTPA administration. The experimental group was further divided into six subgroups (n=5 each) based on the time intervals (4, 8, 18, 36, 72, 96 hours) between DOX and 99mTc-DTPA administration. In each group, the subjects were sacrificed 2 hours post 99mTc-DTPA injection, the organs isolated and counted for radioactivity.
Results: The results revealed that the percent total retained dose (%TRD) significantly (p<0.001) decreased in urinary tract while significantly (p<0.001) increased in liver and biliary tree as compared to the experimental group.

Conclusion: The results of this pre-clinical study put the accuracy of renal scintigraphy in question in patients receiving DOX based chemotherapy. However, human studies are proposed for validity of results with regards to clinical practice.

Keywords

Main Subjects


  1. Demirel BB, Balci TA, Tasdemir B, Koc ZP. Comparison of DTPA and MAG3 renal scintigraphies in terms of differential renal function based on DMSA renal scintigraphy. Pakistan J Med Sci. 2012;28(5):795–9.
  2. Aktaş A, Haberal M. Classification of Tc-99m DTPA renograms based on the relationship between uptake and perfusion pattern. Transplant Proc. 2005 Dec;37(10):4259-65.
  3. Lin CC, Shih BF, Shih SL, Tsai JD. Potential role of Tc-99m DTPA diuretic renal scan in the diagnosis of calyceal diverticulum in children. Medicine (Baltimore). 2015 Jun;94(24):e985.
  4. Kim YI, Ha S, So Y, Lee WW, Byun SS, Kim SE. Improved measurement of the glomerular filtration rate from Tc-99m DTPA scintigraphy in patients following nephrectomy. Eur Radiol. 2014 Feb;24(2):413-22.
  5. Gibson P, Shammas A, Cada M, Licht C, Gupta AA. The role of Tc-99m-DTPA nuclear medicine GFR studies in pediatric solid tumor patients. J Pediatr Hematol Oncol. 2013 Mar;35(2):108-11.
  6. Gustafson DL, Rastatter JC, Colombo T, Long ME. Doxorubicin pharmacokinetics: Macromolecule binding, metabolism, and excretion in the context of a physiologic model. J Pharm Sci. 2002 Jun;91(6):1488-501.
  7. Zunina F, Gambetta R, Di Marco A. The inhibition in vitro of DNA polymerase and RNA polymerases by daunomycin and adriamycin. Biochem Pharmacol. 1975 Jan 15;24(2):309-11.
  8. Taatjes DJ, Gaudiano G, Resing K, Koch TH. Alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J Med Chem. 1996 Oct 11;39(21):4135-8.
  9. Bielack SS, Erttmann R, Kempf-Bielack B, Winkler K. Impact of scheduling on toxicity and clinical efficacy of doxorubicin: what do we know in the mid-nineties? Eur J Cancer. 1996 Sep;32A(10):1652-60.
  10. Palade P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release. J Biol Chem. 1987 May 5;262(13):6135-41.
  11. Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. National surveillance of emergency department visits for outpatient adverse drug events. JAMA. 2006 Oct 18;296(15):1858-66.
  12. Cohen AL, Budnitz DS, Weidenbach KN, Jernigan DB, Schroeder TJ, Shehab N, Pollock DA. National surveillance of emergency department visits for outpatient adverse drug events in children and adolescents. J Pediatr. 2008 Mar;152(3):416-21. 
  13. Gomes ML, de Mattos DM, de Souza Freitas R, Bezerra RJ, Bernardo-Filho M. Study of the toxicological effect of mitomycin C in mice: alteration on the biodistribution of radiopharmaceuticals used for renal evaluations. Hum Exp Toxicol. 2001 Apr;20(4):193-7.
  14. Moreno SR, Silva AL, Diré G, Honeycut H, Carvalho JJ, Nascimento AL, Pereira M, Rocha EK, Oliveira-Timóteo M, Arnobio A, Olej B, Bernardo-Filho M, Caldas LQ. Effect of oral ingestion of an extract of the herb Uncaria tomentosa on the biodistribution of sodium pertechnetate in rats. Braz J Med Biol Res. 2007 Jan;40(1):77-80.
  15. Moreno SR, Carvalho JJ, Nascimento AL, Pereira M, Rocha EK, Olej B, Caldas LQ, Bernardo-Filho M. Experimental model to assess possible medicinal herb interaction with a radiobiocomplex: qualitative and quantitative analysis of kidney, liver and duodenum isolated from treated rats. Food Chem Toxicol. 2007 Jan;45(1):19-23. 
  16. Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf. 1993 Apr;8(4):280-94.
  17. Yurekli Y, Unak P, Ertay T, Biber Z, Medine I, Teksoz S. Radiopharmaceutical model using 99mTc-MIBI to evaluate amifostine protection against doxorubicin cardiotoxicity in rats. Ann Nucl Med. 2005 May;19(3):197-200.
  18. Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med. 2010 Jul;40(4):220-41. 
  19. Benjamin RS, Riggs CE Jr, Bachur NR. Plasma pharmacokinetics of adriamycin and its metabolites in humans with normal hepatic and renal function. Cancer Res. 1977 May;37(5):1416-20.
  20. Hung JC, Ponto JA, Hammes RJ. Radiopharmaceutical-related pitfalls and artifacts. Semin Nucl Med. 1996 Oct;26(4):208-55.
  21. Hesslewood S, Leung E. Drug interactions with radiopharmaceuticals. Eur J Nucl Med. 1994 Apr;21(4):348-56.
  22. Ripoll-Hamer E, Freitas LC, De-Paula EF, Fonseca LM, Gutfilen B, Bernardo-Filho M. In vitro effect of cyclophosphamide on the binding of radiopharmaceuticals (99mTcO4- and 99mTc-MDP) to blood elements. Braz J Med Biol Res. 1995 Feb;28(2):256-60.
  23. Fan Y, Lin NM, Luo LH, Fang L, Huang ZY, Yu HF, Wu FQ. Pharmacodynamic and pharmacokinetic study of pegylated liposomal doxorubicin combination (CCOP) chemotherapy in patients with peripheral T-cell lymphomas. Acta Pharmacol Sin. 2011 Mar;32(3):408-14. 
  24. Mountford PJ, Hall FM, Wells CP, Coakley AJ. Breast-milk radioactivity after a Tc-99m DTPA aerosol/Tc-99m MAA lung study. J Nucl Med. 1984 Oct;25(10):1108-10.
  25. Barbosa VS de A, Lisboa MJS, Sampaio TBM, Lima HC de SM, Holanda CM de CX, Medeiros AC. Effect of antimalarial chloroquine on the biodistribution of sodium pertecnetate in swiss mice. J Surg Clin Res. 2014;5(2):100–8.
  26. Mattos DMM, Gomes ML, Freitas RS, Moreno S, Nascimento ALR, Carvalho JJ, Bernardo-Filho M. Vincristine toxicity: The effect on the biodistribution of radiopharmaceutical and in the optical microscopy of organs isolated from the treated animals. J Label Compd Radiopharm. 2001;44(Suppl 1):S477–9.
  27. Gomes ML, Mattos DMM, Freitas RS, Moreno SRF, Bernardo-Filho M. Evaluation of the toxic effect of chemotherapeutic drugs: Study on the biodistribution of 99mTc-radiopharmaceuticals used in bone scintigraphy in mice. J Label Compd Radiopharm. 2001;44(Suppl 1):S619–21.
  28. Gomes ML, de Souza Braga AC, de Mattos DM, de Souza Freitas R, de Paula EF, Bezerra RJ, Bernardo-Filho M. Effect of mitomycin-C on the bioavailability of the radiopharmaceutical (99m)technetium-phytic acid in mice: a model to evaluate the toxicological effect of a chemical drug. J Appl Toxicol. 2002 Jan-Feb;22(1):85-7.
  29. Mattos DM, Gomes ML, Freitas RS, Rodrigues PC, Paula EF, Bernardo-Filho M. A model to evaluate the biological effect of natural products: vincristine action on the biodistribution of radiopharmaceuticals in BALB/c female mice. J Appl Toxicol. 1999 Jul-Aug;19(4):251-4.
  30. Mattos DM, Gomes ML, Freitas RS, Boasquevisque EM, Cardoso VN, Paula EF, Bernardo-Filho M. The effect of vincristine on the biodistribution of technetium-99m DTPA, GHA, and DMSA in Balb/c female mice. J Nucl Med Technol. 2000 Dec;28(4):271-4.
  31. Kumar P, Singh B, Sharma S, Ghai A, Chuttani K, Mishra AK, Dhawan D, Mittal BR. Preclinical evaluation of [99m]Tc-labeled doxorubicin as a potential scintigraphic probe for tumor imaging. Cancer Biother Radiopharm. 2012 Apr;27(3):221-5.
  32. Cho YE, Lomeda RA, Ryu SH, Lee JH, Beattie JH, Kwun IS. Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells. Nutr Res Pract. 2007 Spring;1(1):29-35.
  33. Zhou S, Zhang B, Sturm E, Teagarden DL, Schöneich C, Kolhe P, Lewis LM, Muralidhara BK, Singh SK. Comparative evaluation of disodium edetate and diethylenetriaminepentaacetic acid as iron chelators to prevent metal-catalyzed destabilization of a therapeutic monoclonal antibody. J Pharm Sci. 2010 Oct;99(10):4239-50.
  34. Safavy A, Smith DC Jr, Bazooband A, Buchsbaum DJ. De novo synthesis of a new diethylenetriaminepentaacetic acid (DTPA) bifunctional chelating agent. Bioconjug Chem. 2002 Mar-Apr;13(2):317-26.
  35. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014 Feb;124(2):617-30.
  36. Xu X, Sutak R, Richardson DR. Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol Pharmacol. 2008 Mar;73(3):833-44.
  37. Kaiserová H, Simůnek T, van der Vijgh WJ, Bast A, Kvasnicková E. Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim Biophys Acta. 2007 Sep;1772(9):1065-74. 
  38. Santos-Oliveira R, Smith SW, Carneiro-Leão AM. Radiopharmaceuticals drug interactions: a critical review. An Acad Bras Cienc. 2008 Dec;80(4):665-75.
  39. Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012;2(6):549–61.
  40. Veilleux-Lemieux D, Castel A, Carrier D, Beaudry F, Vachon P. Pharmacokinetics of ketamine and xylazine in young and old Sprague-Dawley rats. J Am Assoc Lab Anim Sci. 2013 Sep;52(5):567-70.
  41. Gunaratna C. Pharmacokinetic and pharmacodynamic studies in rats using a new method of automated blood sampling. Curr Sep. 2000;18(4):153–7.