Development of Sm-153 Chitosan for Radiosynovectomy

Ali Bahrami-Samani1, Amir Reza Jalilian1, Hassan Yousefnia1, Mehdi Akhlaghi2, Mohammad Mazidi1, Mohammad Ghannadi-Maragheh1

1Radiopharmaceutical Research and Development Laboratory, Nuclear Science and Technology Research Institute, Atomic Energy organization of Iran, Tehran, Iran. 2Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.

(Received 2 November 2009, Revised 23 November 2009, Accepted 4 December 2009)

ABSTRACT

Introduction: Developing new radiosynovectomy agents is of great importance due to the aging of human populations around the world and increasing the incidence of inflammatory diseases. In this work, Sm-153 chitosan agent was developed for the first time in our country and preparation and quality control of the compound is described.

Methods: Sm-153 chloride was obtained by thermal neutron flux (4-5 × 10¹³ n.cm⁻².s⁻¹) of natural Sm₂O₃ sample, dissolved in acidic media. ¹⁵³Sm-samarium chloride (370 MBq) was used in preparation of ¹⁵³Sm-chitosan complex followed by quality control using MeOH: H₂O: acetic acid (4: 4: 2) as mobile phase. The complex stability and viscosity were checked in the final solution up to 2 days. The complex solution and ¹⁵³Sm³⁺ (80 µCi/100 µl) were injected intra-articularly into male rat knee joint followed by scarification studies 6 d post injection.

Results: Sm-153 chitosan was prepared successfully with high radiochemical purity (>99%, ITLC) at room temperature after 10-30 min followed by autoclave sterilization. The complex was stable at room temperature and 37°C up to 2 days. No significant leakage of dose from injection site and its distribution in organs were observed up to 6 days for ¹⁵³Sm-chitosan.

Conclusion: Approximately, more than 90% of injected dose remained in injection site after 6d. The complex is a dedicated agent for radiosynovectomy. The experience from this study would lead to the development of more sophisticated radiosynovectomy radiopharmaceuticals for human use in the country.

Keywords: Chitosan, Radiosynovectomy, Samarium-153, Biodistribution

Corresponding author: Dr Amir R Jalilian, Radiopharmaceutical Research & Development Laboratory, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran E-mail: ajalilian@nrcam.org
INTRODUCTION

In the treatment of rheumatoid arthritis, a surgical, chemical or radiation synovectomy (RSV) may be applied. Surgical synovectomy suffers from the risks of surgery and anesthesia, the need for hospitalization and a prolonged period of rehabilitation remained, albeit to a minor degree (1). In chemical synovectomy highly toxic agents like osmic acid, alkylating substances like nitrogen mustards, methotrexate and cobra venom were used initially but were then abandoned because of possible joint tissue damage (2, 3).

Chitosan, a natural and biodegradable polysaccharide with wide range applications in bio-pharmaceutics, agriculture and water treatment purposes (4), is an excellent molecule for intra-cavital therapy. Sm-153 chitosan (\(^{153}\)Sm-CHITO) complex is reported for internal radiation therapy for treatment of diseases such as hepatocellular carcinoma and rheumatoid arthritis (5).

Also, the effectiveness of other lanthanide compound, Ho-166 chitosan, for malignancies such as gliomas and prostate cancer (6) has been successfully approved. Many beta-emitters such as Sm-153, Lu-177 and Ho-166 can be produced in reasonable amounts using \((n, \gamma)\) reactions. \(^{153}\)Sm (\(T_{1/2} = 46.7\) h) usually prepared by neutron activation of natural and/or enriched \(^{152}\)Sm\(_2\)O\(_3\) (7), can be an excellent therapeutic radionuclide, due to its medium energy beta particles for targeted therapy modalities, for developing radiation therapy compounds using small ligands (8, 9). In this research, \(^{153}\)Sm-CHITO complex production is described in details, followed by determination of complex radiochemical purity, stability and biodistribution (after intra-articular injection) in wild-type male rats.

METHODS

Production of \(^{153}\)Sm was performed at the Tehran Research Reactor (TRR) using \(^{152}\)Sm \((n, \gamma)\) \(^{153}\)Sm reaction with \(^{152}\)Sm in purity of 98.7% (ISOTEC Inc.). Chitosan (medium molecular weight, MW=400 kDa, DDA=85%) was obtained from Fluka (Bucks, Switzerland). Chromatography paper, Whatman No. 1 was obtained from Whatman (Maidstone, UK). Radio-chromatography was performed by using a bioscan AR-2000 radio TLC scanner instrument (Bioscan, Washington, DC, USA). A high purity germanium (HPGe) detector coupled with a Canberra™ (model GC1020-7500SL) multichannel analyzer and a dose calibrator ISOMED 1010 (Dresden, Germany) were used for counting distributed activity in mice organs. All other chemical reagents were purchased from Merck (Darmstadt, Germany). Calculations were based on the 103 keV peak for \(^{153}\)Sm.

![Figure 1. Chemical formula for chitosan](image-url)
All values were expressed as mean ± standard deviation (Mean± SD) and the data were compared using student T-test. Statistical significance was defined as P<0.05. Animal studies were performed in accordance with the United Kingdom Biological Council’s Guidelines on the Use of Living Animals in Scientific Investigations, 2nd edn. All of rats were purchased from Pasteur Institute of Iran, weighing 180-220 g (n=5) and were kept at routine day/night light program and were kept under common rodent diet pellets.

Production and quality control of 153SmCl$_3$ solution

The 153Sm was produced by neutron irradiation of 100 µg of enriched 152Sm$_2$O$_3$ according to reported procedures (10) at a thermal neutron flux of 5×10^{13} n.cm$^{-2}$.s$^{-1}$ for 5 days. Specific activity of the 153Sm was 27.75 GBq/mg.

The irradiated target was dissolved in 200 µl of 1.0 mol/L HCl, to prepare 153SmCl$_3$ and diluted to the appropriate volume with ultra pure water, to produce a stock solution. The mixture was filtered through a 0.22 µm biological filter and sent for use in the radiolabeling step. Radionuclidic purity of the solution was tested for the presence of other radionuclides using beta spectroscopy and HPGe spectroscopy to detect various interfering beta and gamma emitting radionuclides.

The radiochemical purity was also checked by Whatman No.1 chromatography paper, and developed in a mixture of 10 mmol/L DTPA solution and also %10 ammonium acetate:methanol (1:1) as mobile phases.

Preparation of 153Sm chitosan complex

$[^{153}\text{Sm}]$Samarium chitosan complex was prepared by dissolving of chitosan (35 mg) in 3.5 ml of 1% acetic acid aqueous solution following the addition of ascorbic acid (15 mg) and the mixture was stirred at room temperature till a transparent solution was formed. To the above mixture 296-370 MBq (in 0.5 ml) of $[^{153}\text{Sm}]$samarium chloride was added followed by stirring for 5 minutes and standing for 30 minutes at room temperature. For sterilisation, the 0.22 micron sterile filtration was not successful due to viscosity of the solution. Thus the radiolabeled mixture was autoclaved for 20 min at 120°C. The effect of the autoclave on the stability of the complex was also studied using ITLC. For kit preparation, the starting chitosan, ascorbic acid and acetic acid solution containing preservative amounts of benzyl alcohol was lyophilized under sterile conditions and kept in fridge up to 60 days.

Stability testing of the radiolabeled compound in final formulation

Stability of 153Sm-chitosan in final preparation was determined by storing the final solution at 4° and 25°C for 2 days and performing frequent ITLC analysis to determine radiochemical purity. ITLC analysis of the conjugated product was performed to monitor for degradation products or other impurities. After subsequent 153Sm-labeling of the stored product, both labeling efficiency and radiochemical purity were determined.

Stability testing of the radiolabeled compound at 37°C

Final 153Sm-CHITO solution (200µCi) was incubated in presence of freshly prepared human serum (300 µl) and kept at 37°C for 2 days. The complex stability was assessed by size exclusion chromatography on a Sepharose column (1 x 30 cm). The column was equilibrated with PBS and eluted at a flow rate of 0.5 mL/min at room temperature; 1 mL fractions were collected and their activities were determined in a dose calibrator, also the presence of serum proteins in each fraction was determined by Folin-Coliciteau® method. The control samples were applied to the column separately, including Sm$^{3+}$ cation, 153Sm-
CHITO complex and human serum sample for retention time determination.

Quality control
For measuring radiochemical purity and radiolabeling yield, a 1μL sample of the [153Sm]samarium chitosan complex was spotted on a chromatography paper (Whatman No. 1), and developed in a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The Rf values of free Sm-153 and [153Sm]samarium chitosan complex were 0.45 and 0.0, respectively.

Biodistribution of 153SmCl3 in male wild-type rats
To determine the biodistribution of free 153SmCl3, in case of any radioisotope leak from the injection site, the cation in normal saline solution was administered to wild-type rats. A volume of 153SmCl3 stock solution (50-100 μl,) was evaporated at 50°C and N2 flow. To the residue, sterilized normal saline solution (according to appropriate specific activity) was added. For each animal, appropriate amount of 153SmCl3 activity (150±5 μCi in 50-100 μl,) was injected intravenously to rats through their tail vein. The animals were sacrificed at the exact time intervals (4, 24, 48 and 96 h), and the specific activity of different organs was calculated as percentage of injected dose per gram using an HPGe detector.

Biodistribution of radiolabeled chitosan wild-type rats after intra-articular administration
To determine the accumulation of radiolabeled chitosan in the intraarticular cavity radiolabeled chitosan solution was carefully administered to wild-type rats. A volume (50 μl) of final radiolabeled chitosan solution containing 60 ± 2 μCi radioactivity was injected intraarticularly to rats. The animals were sacrificed 4 and 6 d post injection. The specific activity of different organs was calculated as percentage of urea under the curve of 103 keV peak per gram using an HPGe detector.

RESULTS AND DISCUSSION
Production and quality control of 153Sm
The radionuclide was prepared in a research reactor according to regular methods with a range of specific activity 25.9-27.7 GBq/mg for radiolabeling use, after counting the samples on an HPGe detector for 5 hours, very slight amount of impurities were recorded and shown to be Eu radionuclides as shown in Table 1.

<table>
<thead>
<tr>
<th>Radionuclides</th>
<th>Impurity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu-154</td>
<td>< 2.27e-4</td>
</tr>
<tr>
<td>Eu-155</td>
<td>< 1.02e-4</td>
</tr>
<tr>
<td>Eu-156</td>
<td>< 4.90e-4</td>
</tr>
</tbody>
</table>

Table 1. The radionuclidic impurities in the final Sm-153 samples produced form enriched Sm-152 (n=5).

The radioisotope was dissolved in acidic media as a starting sample and was further diluted and evaporated for obtaining the desired pH and volume followed by sterile filtering.

The radioisotope was dissolved in acidic media as a starting sample and was further diluted and evaporated for obtaining the desired pH and volume followed by sterile filtering. The radiochemical purity of the Sm-153 solution was checked in two solvent systems, in 10mM DTPA, Sm3+ cation is complexed to more lipophilic 153Sm-DTPA form and migrates to higher Rf, while small radioactive fraction remains at the origin which could be related to other Sm ionic species, not forming 153Sm-DTPA complex, such as SmCl4, etc. and/or colloids.
On the other hand, 10% ammonium acetate:methanol (1:1) mixture was also used for the determination of radiochemical purity. The fast eluting species was possibly the ionic Sm-153 cations other than Sm$^{3+}$ and the remaining fraction at R_f 0.05 was a possible mixture of Sm$^{3+}$ and/or colloids. Due to existence of 1% impurity in both cases the existence of colloids is unlikely (Figure 2).

Preparation of 153Sm-samarium chitosan complex

The effect of various factors on the labeling yield of 153Sm-samarium chitosan were studied. In higher concentration no significant deference exists on labeling yield for added 153Sm samarium chloride activity (1110 MBq). The chitosan which had a molecular weight of 400 kDa was used to investigate the effect of chitosan concentration on labeling yield at pH=3.5.

Labeling yield increased with increasing chitosan concentration and reached above 98% when the concentration reached 35 mg/3 ml. The highest labeling yield was achieved at pH=2.8-3.2 while decreased beyond this range. The labeling yield of 99% was achieved after 30 minutes. The effect of absence and presence of ascorbic acid (at various concentrations) as a complex stabilizer were also studied.

ITLC using a mixture of methanol, water and acetic acid showed that the complex is majorly prepared in 30 min with 99% radiochemical purity; the remaining 1% is possibly attributed to other Sm ionic species which can not react with chitosan (Figure 3).

Based on the obtained results, the optimal procedure for the preparation of 153Sm-samarium chitosan complex with a high labeling yield is as follows. 35mg of chitosan (MW=400 kDa) was dissolved in 3.5 ml of 1% acetic acid aqueous solution. The acidity of obtained solution was adjusted to pH=3 by addition of 0.5 M NaOH solution and followed by addition of 153Sm-samarium chloride solution. Finally the total volume was adjusted to 4 ml by addition of deionized water.

Stability studies of 153Sm-samarium chitosan complex

The stability of prepared 153Sm-samarium chitosan complex was checked up to 48 hours after preparation. The complex was stable in acidic media (pH=3.5) and its radiochemical purity was above 99% even
48 hours after preparation. The radiochemical purity of ^{153}Sm]samarium chitosan complex was decreased to 99% after 72 hours in phosphate buffer solution. Also the stability of the complex was determined at 37°C for 48 h and the data were almost consistent with the final solution stability.

Although the complex is injected intra-articularly and is not in direct contact with serum, stability test was developed for the complex in presence of human serum at 37°C. The mixture was then passed through a sephadex column followed by the elution with PBS and each fraction was checked for radioactivity and presence of serum proteins by colorimetric method.

Biodistribution studies for Sm$^{3+}$ cation in rats

The animals were sacrificed by CO$_2$ asphyxiation at selected times after injection (4, 24, 48 and 96h). Dissection began by drawing blood from the aorta followed by removing heart, spleen, muscle, brain, bone, kidneys, liver, intestine, stomach, lungs and skin samples. The tissue uptakes were calculated as the percent of area under the curve of the related photo peak per gram of tissue (% ID/g) (Figure 4).

For 153Sm cation, the biodistribution was mainly in the liver, kidney and bone. The free cation is mainly soluble in water and it can be excreted via urinary tract. Since the metallic 153Sm is transferred in plasma in protein-bond form, the major final accumulation was showed to be liver. After 48 h the metabolites and/or free cation were excreted from liver into intestines via hepatobiliary tract resulting significant activity in this organ, but it was not significant at 96h. Trace accumulation was also observed in spleen.

Biodistribution studies after intra-articular administration of Sm$^{3+}$ cation in rats

The distribution of injected dose in rat organs up to 4d after intra-articular injection of 153Sm]samarium chloride (60 µCi/100ul) solution was determined for control studies. Based on these results, it was concluded that the most part of injected activity was extracted from the circulation and distributed in rat organs which similar to free Sm$^{3+}$ distribution while administered intravenously (Figure 5).
Figure 4. Percentage of injected dose per gram (ID/g %) of 153SmCl$_3$ in rat tissues at 4, 24, 48 and 96 h post injection.

Figure 5. Distribution of 153SmCl$_3$ in wild-type male rats, 4 d after intra-articular injection of 60 µCi of compound. %ID-percentage of injected dose. Each bar presents mean± SD (n=3).
Biodistribution studies after intra-articular administration of 153Sm-chitosan cation in rats

Figure 6 presents the distribution of injected dose in the rat organs at various time intervals after intra-articular injection of 60 μCi/100μl of $[^{153}\text{Sm}]$samarium chitosan complex as percentage of injected dose. In case of any leak from the joint, the complex would accumulate in reticulendothelial (RE) system due to high molecular weight of the complex, unless the complex would dissociate at serum pH and Sm$^{3+}$ cation would be formed.

A very small amount of activity was observed in spleen and liver, which are two important RE organs, indicating no major complex leak has occurred. Very negligible liver and kidney uptakes are observed which are possibly caused by Sm-153 cation release from the injected joint and not the radiolabeled complex uptake.

Figure 7 demonstrates the biodistribution of the compound among the tissues excluding the injected knee data to better understand the biodistribution of the leaks from the knee.

The distribution of the radioactivity among tissues after removing knee joint accumulation data demonstrates a typical Sm$^{3+}$ cation biodistribution among the tissues. It is believed that free Sm cation is the only radiochemical species escaping from knee joint and not 153Sm-CHITO complex is found in circulation.

Since Sm-153 is a radiolanthanide practically produced by the research reactors in high specific activities using natural and enriched target, this work was designed for the research purposes of developing new radiolabeled chitosans such as Ho-166 chitosan for intracavital therapy. The preparation of these compounds are feasible and due to the interesting biological properties of chitosan the human studies in most of east Asian countries has been started vastly used in hepatocellular carcinomas and radiosynovectomy (11, 12). The side effects usually imposed by iron macroagregates are mostly a problem in clinics such as iron toxicity and painful organs, while in this case are rare.

The use of radionuclides in radiosynovectomy is usually a function of half life and beta particle range leading to the specification of any agent to a specific inflammated organ.

Figure 6. Distribution of $[^{153}\text{Sm}]$-chitosan in wild-type male rats, 4 d after intra-articular injection of 60 μCi of compound. %ID-percentage of injected dose. Each bar presents mean± SD (n=3).
CONCLUSION

The 153SmSamarium chitosan complex was prepared with high radiochemical yield (>99 %) in the optimized condition; 35mg/3ml of chitosan concentration in diluted acetic acid solution (pH=3). The prepared complex was stable in the final solution at room temperature, 37ºC and presence of human serum, and can be used even 48 hours after preparation. Intra-articular injection of 153SmSamarium chitosan complex in male wild-type rats and investigation of leakage of activity in the body showed that most of injected dose has remained in injection site 6 d after injection. Finally a kit formulation was developed for the in-situ preparation of the radiopharmaceutical in distant clinical centers.

REFERENCES

