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Introduction: Diagnosing Juvenile Idiopathic Arthritis (JIA) presents challenges 
due to symptom variations, clinical-radiologic delays, and the absence of 
definitive diagnostic tools. This study aimed to evaluate the diagnostic capability 
of radiomic features derived from blood pool phase images obtained through 
bone scintigraphy in JIA. 
Methods: A cohort of 190 patients was included, utilizing the area between knee 
growth plates as the region of interest (ROI) for extracting image features. After 
preprocessing, quantitative features were extracted from original and filtered 
images. A recursive feature elimination (RFE) algorithm identified significant 
features, subsequently employed in training a random forest classifier. 
Results: In the validation phase, our radiomic model, comprising 14 features (4 
original and 10 filtered image features), achieved an area under the receiver 
operating characteristic curve (AUC) of 0.89 (95% CI: 0.88–0.92). This robust 
performance confirmed the efficacy of radiomics in identifying active knee 
arthritis using technetium–99m-methyl diphosphonate blood pool images in JIA 
patients.  
Conclusion: This study highlights the diagnostic accuracy of radiomics in 
discerning arthritic joints, suggesting its potential as an alternative to 
conventional quantification techniques. The robustness of radiomics in 
diagnosing arthritic joints signifies a promising avenue for future research in JIA 
diagnosis and treatment. 
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INTRODUCTION 

Juvenile Idiopathic Arthritis (JIA) manifests as 
joint inflammation in children under 16 years old, 
characterized by chronic autoimmune reactions 
targeting the joints. The resultant symptoms—
swelling, stiffness, inflammation, and 
discomfort—underscore the necessity for early 
detection and treatment to prevent joint damage 
and related complications [1]. A gold standard for 
diagnosing JIA is conventional radiography. 
However, its limitations in sensitivity have 
prompted extensive efforts to develop more 
refined radiographic scoring systems. Currently, 
clinical assessment by rheumatologists is pivotal, 
relying on a comprehensive evaluation of 
symptoms, physical findings, laboratory results, 
and imaging studies. While Magnetic Resonance 
Imaging (MRI) is considered highly sensitive in 
identifying synovial pathologies, particularly in 
early stages, its capacity is limited in systemic 
rheumatologic disorders due to confined imaging 
field, often focusing on specific joints rather than 
offering a holistic assessment. The absence of a 
single gold standard test underscores the 
challenges in diagnosing JIA. This necessitates 
ongoing research into other refining diagnostic 
methodologies for future including nuclear 
medicine to enhance diagnostic precision and 
expedite early intervention [2-10]. Bone 
scintigraphy with technetium–99m-methyl 
diphosphonate ([99mTc] Tc-MDP) stands as a 
favored alternative due to its capacity for holistic 
joint evaluation, distinguishing arthritis and soft 
tissue inflammation, while ruling out other 

skeletal pathologies like trauma and metastasis 
[11, 12].  
This modality comprises two phases: an initial 
capillary blood pool phase image and delayed 
bone metabolism views, offering valuable insights 
into diagnosing inflammatory pathologies [13, 
14].  
Radiomics, an advanced field, employs 
computational techniques to quantitatively 
analyze medical imaging, unveiling patterns 
beyond human perception while ensuring more 
objective and consistent outcomes [15-17]. 
Joint blood pool spot images in two-phase 
radionuclide bone scanning present advantages 
over other techniques—such as ultrasonography 
and MRI—offering comprehensive whole-body 
joint assessments in a single procedure, coupled 
with high sensitivity, availability, and cost-
effectiveness [18]. Notably, the blood pool phase 
is particularly instrumental in detecting early-
stage active joint inflammation [14, 18, 19]. To 
our knowledge, this study pioneers the utilization 
of radiomics on blood pool images for diagnosing 
JIA, aiming to explore the diagnostic potential of 
radiomic features in the blood pool phase of bone 
scintigraphy for JIA diagnosis. 

METHODS 

Study flowchart 
Figure 1 illustrates the various stages undertaken 
in this study, encompassing image acquisition, 
image segmentation, feature computation, 
machine learning modeling, and model evaluation. 

 

 
Figure 1. Radiomics study flowchart 

 
Patient population 
At the dedicated pediatric rheumatology clinic in 
the Children's Medical Center Hospital, a diverse 
range of JIA cases were referred for bone 
scintigraphy, aimed at detecting both active and 
silent arthritis manifestations. This retrospective 

cohort study, conducted at  the Nuclear Medicine 
Department between 2021 and 2022, involved 190 
patients (100 males and 90 females) with a mean 
age of 8 ± 3.5 years. The inclusion requires was 
clinically approved juvenile idiopathic arthritis (JIA) 
in at least one knee. Exclusion criteria were age 
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greater than 16 years and poor-quality images. 
Figure 2 shows the research flow diagram and patient 

inclusion with STARD criteria [20].

 

 
Figure 2. Study flow and patients’ inclusion according to STARD criteria 

 
Image acquisition and diagnostic validation 
Imaging was performed with a dual-head gamma 
camera (Symbia Intevo Bold SPECT/CT) with IV 
injection of [99mTc] Tc-MDP.  In order to 
determine radiopharmaceutical activity used 
EANM pediatric dosage card [21]. All patients 
underwent blood pool phase imaging around 5 
minutes and delay phase imaging about 3 to 4 
hours after injection of radiopharmaceutical. All 
image sets were analyzed twice by a nuclear 
medicine scientist, expert in pediatric 
rheumatologic disorders blinded to specific 
clinical information. Within our exploration of 
optimal count ratios for diagnosing arthritis in 
JIA patients, our findings was congruent with 
visual interpretation of adult rheumatoid 
arthritis images as the normal synovial surfaces 
are photopenic in comparison to capillary blood 
pool of adjacent muscles and when the count 
ratio within the synovial area of the knee joint 
exceeds the soft tissue count of the thigh, it 
strongly indicated an escalated probability of 
joint inflammation, aligning with current 
insights. Joint inflammation was approved by 
dedicated pediatric rheumatologist according to 
clinical symptoms, physical examinations and 

laboratory findings and clinical follow up 
evaluations. 

Segmentation 
Segmentation of regions of interest (ROI) is the 
most challenging component of a Computer-
Aided Diagnosis (CAD) system and is crucial for 
making accurate diagnoses. It is impossible to 
segment the knee joint precisely in blood pool 
images. Therefore, for the sake of reproducibility 
and repeatability in image feature extraction, we 
chose the area between the two knee growth 
plates as the ROI. In this study, each knee was 
considered a separate sample for feature 
extraction. Figure 3 displays the selected ROIs. 
The images were manually segmented using the 
3D Slicer software platform (http://slicer.org, 
version 5.2.1) [22] . 

Image preprocessing and features extraction 
Texture feature sets must be interpolated to 
isotropic voxel spacing to achieve rotational 
invariance and to allow comparisons between 
image information from various samples, 
cohorts, or batches. Maintaining constant 
isotropic voxel spacing across different tests and 
devices is crucial for repeatability. In this study, 
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we applied nearest neighbor interpolation to the 
image matrix. Briefly, nearest neighbor 
interpolation assigns the brightness of the 
closest voxel in the original grid to every voxel in 
the interpolation grid [23]. PyRadiomics (version 
3.0.1) was used to extract several radiomic 
features, including texture and first-order 
features, in accordance with the imaging 
biomarker standardization initiative (IBSI) [24]. 
Table 1 displays the feature classes extracted 

from the ROI. To characterize the attributes of 
voxel intensities, first-order features such as 
energy, entropy, standard deviation, skewness, 
kurtosis, etc., are determined based on the 
intensity distribution and histogram. Texture 
analysis quantifies the gray-level pattern and 
pixel interactions. Additionally, images 
processed with Laplacian of Gaussian (LoG) were 
also analyzed. 

 

 
Figure 3. Image ROI for features extraction 

 
Table 1. Feature classes extracted from blood pool images 

Features Class Numbers 

First Order 18 

Texture  

Gray level co-occurrence matrices (GLCM) 22 

Gray level dependence matrices (GLDM) 14 

Gray level size zone matrices (GLSZM) 16 

Gray-level run-length matrices (GLRLM) 16 

Neighboring gray-tone difference matrices (NGTDM) 5 

 
Features selection 
When working with high-dimensional data, the 
learning task becomes more challenging due to 
redundancy among features, which lowers 
classification accuracy and increases 
computational costs. In this study, the random 
forest recursive feature elimination (RFE) 
method was used to identify the most suitable 
features for classifying patients. RFE is a popular 

approach because it is straightforward to 
implement and effective in selecting features. 
It's important to note that when using RFE, 
choosing the number of features to select is a 
critical decision. The RFE technique involves 
training a machine learning algorithm, ranking 
the features based on their importance, 
discarding the least significant ones, and 
retraining the model until only a specified 
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number of features remain. In this study, we first 
removed highly correlated features (Spearman's 
rank correlation coefficient > 0.85) and then 
tested the performance of several feature sets 
D= (10, 11, 12, …, 20), finally selecting the 
optimal feature set for model building. 

Model building and model evaluation 
The random forest (RF) algorithm is used to 
classify patients as either positive or negative for 
Juvenile Idiopathic Arthritis (JIA). Studies have 
shown that the RF algorithm can effectively 
predict outcomes even with a small number of 
samples and in datasets with a vast number of 
dimensions [25]. In this study, 8 different models 
were created and evaluated with features 
extracted from the anterior and posterior of 
original and log-filtered images, as well as 
concatenated features from both original and 
filtered images, in addition to clinical features (sex 
and age). The models were evaluated using the 
area under the ROC curve and accuracy metrics. 
The total samples were split into 85% for training 
and 15% for testing, based on the learning curve. 
The models' hyperparameters were tuned using a 
10-fold cross-validation method. To avoid data 
leakage, feature selection and model building 
were performed on the training set. 

RESULTS 

Patient’s characteristics 
In our study, we analyzed a total of 360 knee 
samples. Of these, 181 samples were classified as 

healthy, representing 50.28% of the total. The 
remaining 179 samples were identified as 
affected by the condition under investigation, 
accounting for 49.72% of the overall sample size. 
Moreover, 40% are bilaterally arthritic, and 
approximately 10% are unilaterally arthritic. This 
distribution highlights a nearly equal 
representation of healthy and affected knees 
within our study cohort, allowing for a balanced 
comparison and analysis. Age and sex distribution 
was not statistically different between the 
negative and positive group (P > 0.05). 

Feature selection and model building 
In feature selection step, we test model accuracy 
of different feature sets with RFE method to 
finally select optimal performance. For different 
models, number of optimal features were 
variable. Performances of the original, log filtered 
and concatenated model are presented in Table 
2. As you can see the concatenated anterior 
original and log filtered model is the best 
performance model. This outperformance model 
constructed with 14 features including, 4 original 
features (firstorder_Skewness, 
glcm_Autocorrelation, glcm_ClusterShade, 
glszm_LargeAreaEmphasis) and 10 LoG filtered 
features (firstorder_Mean, firstorder_Median, 
firstorder_Entropy, firstorder_10Percentile, 
firstorder_Energy, firstorder_Minimum, 
ngtdm_Coarseness, glcm_Correlation, 
glrlm_LongRunLowGrayLevelEmphasis, 
glrlm_ShortRunLowGrayLevelEmphasis). 

 
Table 2. Performance metrics of different model configurations 

Model AUC ACC 

Ant Original Model 0.72 0.73 

Post Original Model 0.55 0.57 

Concat Ant and Post Original Model 0.75 0.77 

Ant LoG Filtered Model 0.80 0.81 

Post LoG Filtered Model 0.61 0.63 

Concat Ant and Post LoG Filtered Model 0.75 0.75 

Concat Ant Original and LoG Filtered Model 0.89 0.90 

Concat Post Original and LoG Filtered Model 0.60 0.62 

Figure 4 illustrates the evaluation of the 
effectiveness of the original and combined models 
was done by measuring the area under the receiver 
operating characteristic curve (AUC) obtained from 
the 53 test datasets. The AUC of the concatenated 
anterior original and log filtered model was 0.88 
(95% confidence interval (CI), 0.86 to 0.91) in the 
test cohort. 

A learning curve is the relationship between a 
learning model on a task and the amount of data. 
Variable-sized subsets of the training set will be 
utilized to train the estimator, and a score will be 
produced for each test set. Figure 5 demonstrated 
the test score rises as the training dataset grows in 
size. In fact, it grows indicates that additional data 
to train the model, increase its generalization 
performance. 

 



Radiomics analysis of bone scan for the diagnosis of  JIA 

Ebrahimi M. et al. 
 

71 

 
Figure 4. Area under the receiver operating characteristic curve (AUC) for primary and concatenated model 

 

 
Figure 5. Learning curve RF algorithm on concatenated original and log filtered features 

 

 

DISCUSSION 

Medical research is constantly evolving, with -
omics being conducted every day to explore 

different disorders. The juvenile idiopathic arthritis 
(JIA) is characterized by chronic mono-oligo or poly 
articular  joint inflammation which may progress to 
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joint destruction and functional disability [26, 27]. 
This study proves that radiomics assessment on 
[99mTc] Tc-MDP Blood pool knee images, 
considered as the most involved joint in JIA [28], 
provides highly accurate results along with the 
optimal model (Concat_original_log_model) 
showing AUC of 0.89 and accuracy of 0.9.  
In line with the importance of adhering to 
international rheumatology guidelines to establish 
standardized diagnostic criteria for Juvenile 
Idiopathic Arthritis (JIA), our study acknowledges 
the potential for further clarity in defining the 
standard of truth for knee arthritis diagnosis. Our 
diagnostic criteria were founded upon a fusion of 
positive blood pool imaging in scintigraphy and 
corroborating assessments by experienced 
pediatric rheumatologists. Notably, the concern 
raised about the possible identification of 
subclinical arthritis solely through scintigraphy, 
independent of clinical recognition by referring 
physicians, is a pertinent consideration. It is 
acknowledged that scintigraphy, as an imaging 
modality, may unveil subclinical alterations that 
elude detection during routine clinical evaluation. 
Our dataset encompasses instances where 
scintigraphy was performed due to non-articular 
pathologies, potentially revealing subclinical 
changes not clinically identified as arthritis. This 
underscores the need for a nuanced approach that 
amalgamates objective imaging findings with 
clinical judgment, a facet we aim to refine in future 
investigations. 
According to our results, the combined model 
including anterior original and filtered image 
features reveal significant high performance 
among models (accuracy: ant_original_model = 
0.72, ant_log_model = 0.81 and 
concat_original_log_model = 0.90). As is clear from 
the results, anterior image features have 
considerable diagnostic information rather than 
posterior image features that would be possibly 
due to angiographic scatter of popliteal arteries 
over posterior views. Like previous studies, [29, 
30]. We demonstrate Laplacian of Gaussian (LoG) 
preprocessing filters positive impact on diagnostic 
and predictive performance of the radiomics 
models.  
According to previous studies, [99mTc] Tc-MDP 
accumulates in active arthritic joints even with no 
clinical manifestations [31, 32]. Kim et al.'s findings 
indicating a 10% sensitivity increase (84% versus 
74.8%) in blood pool views of 99m Tc MDP 
underscored the importance of this phase 
compared to the delay phase [14]. Our study's 
primary emphasis was on standardizing 
interpretation methodologies to ensure 
assessment consistency and reliability of blood 

pool phase. Considering the significance of 
inflammatory joint disease in young individuals, 
meticulous bone scan interpretation holds 
potential for early detection and monitoring the 
progression of JIA. Further clinical investigations in 
this area are essential to refine diagnostic accuracy, 
leading to alterations in JIA managements. The use 
of quantitative analysis in bone scintigraphy of 
rheumatoid arthritis patients has been previously 
studied by Lee et al., using joint uptake ratio 
showing 78% AUC for detecting active knee 
arthritis [33]; while the -omics optimal model 
(Concat_original_log_model) in current study 
shows added AUC value of about 12% in detecting 
active knee joints. To the best of our researches, 
most other studies dealt with visually interpreting 
bone scintigraphy images in patients with joint 
disorders owing inherent limitations, reported 
significant discrepancies among different readers 
[11, 34]. 
There are some limitations in the study that must 
be acknowledged. Firstly, it was a single center trial 
with limited number of joint views. The other 
limitation is monoarticular nature of this study; 
Future research can be performed on blood pool 
database of other joints involved in JIA including 
hip joints, ankles, wrists, etc. 

CONCLUSION 

This study retrospectively proved the high accuracy 
of radiomics in detecting active knee arthritis using 
[99mTc]Tc-MDP blood pool images of patients with 
JIA. Diagnostic robustness of radiomics in arthritic 
joints can shed light on future studies as an optimal 
alternate to available conventional quantifications.  
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