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ABSTRACT 

Introduction: In this study, we aimed to evaluate the possibility of assessing cardiac abnormality 

using the left ventricular anatomical axis (LVAA) obtained from short-axis views of myocardial 

perfusion imaging (MPI). 

Methods: To obtain LVAA, an ellipse was drawn around the outer wall of SPECT images from 

XCAT phantoms and patients. The best line was then drawn from the center of all the ellipses in 

the short-axis views called LVAA. Then, we defined two angles based on LVAA including Ɵ 

which is the angle created by LVAA with the x-axis, and Φ which is the angle created by LVAA 

with the z-axis. 

Results: In this study, 94 cases were enrolled including 48 males (51%) and 46 females (49%) 

with a mean age of 65.6510.04. According to the results, there was a significant difference 

between the two obtained angles and the result of the scan (p<0.05). The ideal cut-off of Ɵ for an 

abnormal scan was 91.79 (AUC, 0.93; p=0.001) with the sensitivity of 98% and specificity of 80%. 

Conclusion: It can be concluded that LVAA as a quantitative factor is significantly different 

between normal and abnormal MPS and can be used for the evaluation of MPI. 

 

Keywords: Myocardial perfusion imaging; SPECT; Cardiovascular imaging; Left ventricular 

axis; [99mTc]Tc-MIBI 
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INTRODUCTION 

The function of the left ventricle involves a complex interaction between different groups of 

muscle fibers oriented in various directions, including longitudinally, obliquely, and 

circumferentially. This results in a combination of the ventricle shortening in a circumferential 

manner, thickening of the heart wall in a radial direction, and shortening along its long axis [1, 2]. 

Research has shown that the displacement of the atrio-ventricular plane along the long axis is a 

significant factor in the pumping action of the left ventricle in healthy individuals as well as in 

those with diseased hearts. Furthermore, the long axis function influences myocardial function in 

unique ways, such as playing a role in left ventricular diastolic filling and facilitating the filling of 

the atria from the major veins. Dysfunction along the long axis has been observed as an early 

indicator of various pathological conditions [3]. Echocardiography, which assesses the 

longitudinal function, has demonstrated its ability to provide valuable prognostic information for 

a wide range of heart conditions [3]. Despite these distinctive characteristics, the assessment and 

reporting of long axis function are not commonly performed even during clinical Cardiovascular 

Magnetic Resonance (CMR) evaluations [4]. 

Myocardial perfusion imaging (MPI) [5] is a cardiovascular imaging method performed to 

diagnose coronary artery disease (CAD) in two phases following exercise and rest for evaluating 

the quantity and quality of blood supply to the myocardium at different angles and levels of the 

heart [6, 7]. Clinically, physicians have studied left ventricular SPECT images using various 

methods such as heart segment and converting it into a variable mesh model with parameters such 

as ejection fraction, stroke volume, wall thickness, and wall motion [8, 9]. These parameters are 

very useful in the diagnosis of heart attack, heart failure, and evaluation of the amount of living 

and surviving heart muscle [10, 11].  

Unfortunately, one of the problems with SPECT images is that they are noisy and also have a low 

resolution  [12, 13]. Therefore, it is difficult to extract quantitative measures [14, 15]. We run this 

novel project to develop basic principles based upon cardiac imaging methods, which has 

accomplished widespread clinical acceptance as a standard of care for patients with coronary artery 

disease. Hopefully, it might be to use as a surrogate in detection of cardiovascular problems 

especially ischemic disease in future studies. Furthermore, adding a quantitative measurement that 

can extract more information from these images will help the physician to be able to diagnose the 

disease more accurately. In this study, we aimed to evaluate the possibility of assessing the cardiac 

abnormality using the left ventricular anatomical axis (LVAA) obtained from short-axis views of 

MPI. 

 

METHODS 

Patients 

In this retrospective study, 94 patients who underwent MPI from July 2020 to January 2021 were 

enrolled. The clinical history of patients was collected from medical documents. This was a 

registry-based retrospective study approved by our Institution Review Board. 

 

Myocardial perfusion SPECT (MPS) 

MPS was performed in one-day stress and rest phases. Following intravenous injection of 740 

MBq [99mTc]Tc-MIBI, the image acquisition was performed after at least one hour for rest and at 

least 30 minutes for exercise or pharmacologic stress. The images were acquired from the right 

anterior oblique (RAO) to the left posterior oblique (LPO) in 32 projection (20 second/projection) 
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and 64×64 matrix using a dual-head gamma camera (Philips (ADAC) Vertex Plus) equipped with 

low energy-high resolution collimator. The energy window was set at 140±20%. Image 

reconstruction was performed using the ordered subset expectation maximization (OSEM) with 

the combination of four iterations and four subsets. 

Two nuclear medicine physicians reviewed the images. Based on interpretation, the images were 

classified into normal scans and abnormal scans including both infarcted and ischemic 

myocardium. 

 

Phantom study 

Since SPECT images are noisy, we required laboratory images, so the XCAT Phantom was used. 

The integration of the four-dimensional XCAT phantom with the SIMIND Monte Carlo program 

provides a robust framework for simulating scintillation camera imaging and Single Photon 

Emission Computed Tomography (SPECT). The XCAT phantom, a sophisticated 4-D extended 

cardiac-torso model, offers a detailed representation of human anatomy and physiology. Its 

flexibility allows for the simulation of diverse physiological conditions, making it a valuable tool 

in nuclear medicine research. In this study, the XCAT phantom was employed to generate realistic 

laboratory images due to the inherent noise in SPECT images [16]. The phantom accommodates 

variations in gender, weight, height, body elongation, chest dimensions, and the presence or 

absence of breasts, ensuring a broad applicability to different patient demographics. The use of 

four phantoms at eight different time points throughout the cardiac cycle allowed for a 

comprehensive representation, and the average was considered for subsequent analysis[16]. The 

SIMIND Monte Carlo program served as a reliable tool for simulating scintillation camera imaging 

and SPECT [17]. This program accounts for the physical and geometrical characteristics of the 

camera system, making it a comprehensive forward projector in an iterative reconstruction 

algorithm. Specifically, SIMIND utilized a Maximum Likelihood Expectation Maximization (ML-

EM) and Ordered Subsets Expectation Maximization (OSEM) reconstruction algorithm to 

estimate the source distribution and image data (Figure 1) [18]. In the simulation process, the 

XCAT phantoms were used as inputs to the SIMIND code. The parameters specified in the 

SIMIND software included an energy of 140.5 Kev for photons (matching technetium's energy), 

32 shots, and 256 × 256 × 128 matrices for both activity and attenuation maps. The cut-off energy 

for tracking photons was set at half of the initial photon energy (70 Kev). The output from SIMIND 

was then converted into SPECT images using the OSEM reconstruction algorithm [9]. Notably, 

the XCAT phantom was configured to simulate SPECT images with different activity distributions 

in various organs. It can accurately simulate cardiac activity, with relatively high and equal activity 

in all four chambers of the heart, along with abdominal activity, including the liver, gall bladder, 

esophagus, spleen, and specific activities of Tc-99m was set for male and female phantoms. The 

XCAT phantom could simulate 3D distribution of attenuation coefficients and emission 

radionuclide activity, offering a comprehensive approach to imaging simulation. [17, 18]. The 

synergistic use of the XCAT phantom and the SIMIND Monte Carlo program in this study allowed 

for the creation of realistic and diverse SPECT images. This methodology enhances the 

understanding of imaging processes, facilitating advancements in nuclear medicine research and 

contributing to the refinement of imaging techniques. 

 

Image segmentation 

Because this article was supposed to enclose the images of the myocardial short-axis views in an 

ellipse, these images must be segmented to find the edges of the images, so their segmentation is 
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necessary. We used the images of the stress phase for the segmentation and calculation of LVAA. 

Sub-Markov Random Walk (SMRW) [19] was applied for image segmentation. In this method, 

the user specifies the starting points of each image area that corresponds to a separate object in the 

image. The user labels each starting point. The SMRW marks all unlabeled points, then, calculates 

the probability of reaching each marked point from the starting point and finally, finds the highest 

probability. For this purpose, a vector is formed from which each element indicates the probability 

of reaching each of the areas separated by the user from the starting point to the label [20]. Finally, 

by separating the area that has the activity in heart, it creates the image needed for the next part, 

which is ellipse estimation. Therefore, an accurate ellipse estimation method is very critical for the 

estimation of the desired axis. Therefore,  segmented images must be enclosed in an ellipse to 

obtain their centers  [19]. 

 

Ellipse estimation method 

The method of estimating the ellipse is to calculate the diagonal distance regression, in which the 

geometric error is minimized. The orthogonal distance is the distance between the data points and 

the ellipse. This is a cost function that occurs when independent Gaussian noise is assumed to be 

a data point and applied to the maximum probability estimate [21]. The cost function is based on 

the number of data points. For clarification, if the data point (m1, m2) is incorrect in the ellipse, 

this function should match Eq.1. 

 

(1) 𝑎𝑥2 + 𝑏𝑥𝑣 + 𝑐𝑣2 + 𝑑𝑥 + 𝑒𝑣 + 𝑓 = 0 
 

This equation is a general conic equation and depending on whether the discriminant ∆= b2 −
4ac is negative, zero, or positive, it represents ellipses, parabolas, and hyperbolas, respectively. As 

a result, for a data point to satisfy an ellipse equation, the ellipse parameters must also satisfy the 

ancillary constraint 𝑏2 − 4𝑎𝑐 < 0 . 

Assume θ = [a, b, s, d, e, f]T is the vector of parameters, x = [m1, m2]Tis the vector of variables 

and u(x) = [m1
2, m1m2, m2

2, m1, m2, 1]T is the vector of transformed data points. The equation of 

a conic can then be written as θTu(x). 

The algebraic least-squares method could be used to determine how much a data point fails to 

satisfy the ellipse Eq.2. 

(2)     
∥𝜃𝑇𝑢(𝑥)∥2

∥𝜃∥2 =
𝜃𝑇𝑢(𝑥)𝑢(𝑥)𝑇𝜃

∥𝜃∥2  

 

Where ∥ θ ∥2= (θ1
2 + ⋯ + θ6

2)2. As a result of this, the algebraic least squares (ALS) cost function 

is as follows: 

(3)    𝐽𝐴𝐿𝑆(𝜃; 𝑥1, 𝑥2, … , 𝑥𝑁) =
∑ 𝜃𝑇𝑢(𝑥𝑛)𝑢(𝑥𝑛)𝑇𝜃𝑁

𝑛=1

∥𝜃∥2 =
𝜃𝑇𝑀𝜃

𝜃𝑇𝜃
 

Where M = ∑ θTu(xn)u(xn)TθN
n=1 . Because it is so simple to minimize, the algebraic least-

squares cost function is extremely common. This formula is written in the form of the Riley 

equation. The eigenvector associated with the least eigenvalue is the parameter vector θ̂ALS that 

minimizes the algebraic cost function. To find the estimate, all that is required is an 
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eigendecomposition. This is a simple and effective method to use. The ancillary constraint 𝑏2 −
4𝑎𝑐 < 0, on the other hand, is not applied in the procedure. This means that instead of an ellipse, 

the estimate θ̂ALS could be a hyperbola or parabola presented a change to the algebraic cost 

function that ensured an elliptical fit to address this constraint. It was called the Direct Ellipse Fit 

(DIR) [22, 23]. In this step, the edge points of the 8 images of the previous step are found. These 

are the input points of the ellipse estimation algorithm. Using these points, the circumferential 

ellipse is estimated. Then the center of the ellipse is found using Eq.4. The output sample of the 

ellipse is estimated and their centers are shown in figure 1C. 

(4) 𝑥 =
𝑐𝑑−𝑏𝑒

𝑏2−𝑎𝑐
      ,   𝑦 =

𝑎𝑒−𝑏𝑑

𝑏2−𝑎𝑐
   

 

3D axis estimation using cardiac centers 

In this section, the points of the obtained elliptical centers were the input. The variance-covariance 

matrix of those points was obtained. This was the singular value decomposition (SVD) input 

matrix. Using the SVD function, the best line passing through these points was estimated [24]. 

SVD creates orthonormal bases for the null-space and range of a matrix explicitly. The columns 

of U corresponding to the non-zero elements of D cover the range. Columns of V corresponding 

to zero elements of D span the null space. SVD allows a rank decision (rank (A)) is the largest r 

s.t. Dr > 0). There is m - r singular vector on the left that corresponds to the singular value 0. There 

is n - r singular vectors on the right corresponding to the singular value 0. 

SVD (x) returns the numeric unit matrix U and V with columns containing single vectors and a 

diagonal matrix D containing single values. The matrix satisfies the condition A = U × D × V`, 

where V` is the hermetic transposition (different conjugate of transposition) of V(28). SVD does 

not compute single symbolic vectors; therefore, the input matrix X must be converted to floating-

point numbers. The proper direction of the line is proportional to U (: , 1). By converting U to the 

polar coordinates, the output is the angles Ɵ and Φ (𝑅2coefficient of determination = (variance) / 

(total variance)) [25]. At this point, the output Ɵ is a spatial angle created by the three-dimensional 

line estimated with the x-axis. To compare the results of the algorithm, all steps of the algorithm 

had been performed on XCAT phantom images. Figure 2 shows an example of image segmentation 

and achievement of LVAA with angles for abnormal scan and normal scan. 

 

Classification 

Support vector machine (SVM) [26] is a method of observational classification based on statistics. 

This classifier's main purpose is to determine the meta-page that maximizes the margin between 

the two classes as a decision level. SVM classifier separates two classes by a hyperplane within 

the N-dimensional space. The discriminant function of the SVM classifier is defined as   

(5) 𝑓(𝐘𝑗) = 𝑠𝑖𝑔𝑛(𝐖𝑇 . 𝐘𝑗 + 𝑏) 

 

where b could be consistent and 𝐖 maybe a vector with real values. In case, if data cannot be 

separated linearly, discriminant function is defined as 

(6) 𝑓(𝐘𝑗) = 𝑠𝑖𝑔𝑛(𝐖𝑇 . Φ(𝐘𝑗) + 𝑏) 
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Where Φ(𝐘j) is a function to map the
 
𝐘j into a higher dimensional feature space. Ordinarily 

nonlinearly distinguishable information is mapped into higher dimensional including space 

utilizing bit capacities [27]. Hence, discriminant work can be altered as takes after: 

 

(7) 𝑓(𝐘𝑗) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖

𝑖

𝐾(𝐘𝑗. 𝐘𝑖) + 𝑏) 

 

Where 𝐘𝑖 and 𝛼𝑖 are ith support vector and its corresponding weight respectively. K(.,.) is the 

kernel function. One of the kernels that are commonly used in practical applications is a Radial 

Basis Function (RBF) is given as in Eq.6. 

(8) 𝐾(𝐘𝑗. 𝐘𝑖) = exp (−∥ 𝐘𝑗 − 𝐘𝑖 ∥)2 

 

For classification, we considered 70% of cases as train and 20% as the test with 100 times repeat. 

Three models were evaluated to predict the result of the scan including the results of both angles 

as model 1, the results of Ɵ as model 2, and the results of Φ as model 3. In the end, precision, 

recall, and receiver operating characteristic (ROC) curves for the determination of the area under 

the curve (AUC) were obtained as output. 

 

Statistical analysis 

IBM SPSS Statistics for Windows, version 21 (IBM Corp., Armonk, N.Y., USA) was used for 

data analysis. Continuous variables were presented as mean ± SD, and categorical variables were 

presented as numbers and percentages. In addition, the T-test was used to the assessment of the 

difference between groups. Finally, ROC curve analysis was used to determine the cut-off value 

and AUC. P-values less than 0.05 were considered statistically significant. 

 

RESULTS 

Phantom study results 

Table 1 shows the results of the algorithm using the XCAT phantom and its SPECT simulation 

images in an average of eight times. The results indicated that there was no significant difference 

between cardiac Φ and Ɵ of phantom and reconstructed SPECT images obtained from the phantom 

(p>0.05).  

 

Patient study 

The results of this algorithm had also been tested on real MPS data in 94 cases that underwent MPI 

including 48 males (51%) and 46 females (49%) with a mean age of 65.6510.04. Of 94 cases, 53 

(56.4%) showed normal scans while 41 cases (43.6%) showed abnormal scan results. Baseline 

characteristics of patients are presented in Table 2. According to the results, there was a significant 

difference between the two obtained angles and the result of the scan (p<0.05). The mean of Ɵ for 

the abnormal group and normal group were 130.6225.44 and 78.8624.68 (p=0.001) and for Φ 

were 36.9010.95 and 42.739.68 (p=007), respectively. According to the receiver operating 

characteristic (ROC) curve analysis with the area-under-the-curve (AUC), the ideal cut-off of Ɵ 

for an abnormal scan was 91.79 (AUC, 0.93; 95%CI, 0.88-0.99; p=0.001) with the sensitivity of 

98% and specificity of 80%. In addition, the ideal cut-off for Φ for a normal scan was 44.22 (AUC, 

0.68; 95%CI, 0.57-0.79; p=0.003) with a sensitivity of 56% and specificity of 81% (Figure 3). 
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There was no significant relationship between the two angles with age, sex, hypertension, and 

diabetes (p>0.05).  

To classify these data with SVM, 66 cases were used as training set and 28 cases were used as test, 

which have been selected randomly. The recall was obtained 0.9164±0.1007, 0.8973±0.1015, 

0.6082±0.1766 for model 1 (Ɵ+Φ), model 2 (Ɵ), and model 3 (Φ), respectively. The precision was 

obtained 0.7805±0.0782, 0.7697±0.0952, 0.4310±0.0702 for model 1 (Ɵ and Φ), model 2 (Ɵ), and 

model 3 (Φ), respectively. Furthermore, AUC was obtained 0.9351±0.0413, 0.9292±0.0582, 

0.6232±0.0758 for model 1 (Ɵ and Φ), model 2 (Ɵ), and model 3 (Φ), respectively (Figures 4 & 

5). 

  

DISCUSSION 

In the last decades, several efforts have been introduced for application of quantitative parameters 

in medical imaging modalities for faster and more accurate interpretation. For MPI, various 

quantitative parameters are applied such as quantitative polar map which displays the extent, and 

severity of myocardial perfusion defects [28]. Total perfusion deficit (TPD) is another quantitative 

parameter of overall magnitude of hypoperfusion [29]. In addition, segmental perfusion scores 

which divides cardiac territories  into 17 segment and each segment is scored 0-5 based on uptake 

(0 = normal; 1 = mildly abnormal; 2 = moderately abnormal; 3 = severely abnormal; 4 = absent), 

then based on the scores, defect severity is calculated [30]. Various validation studies have been 

performed for these parameters [31-33]. 

In this study, we tried to introduce a new quantitative parameter for the interpretation of MPI by 

using two angles obtained from LVAA. We indicated that there is a significant difference between 

these angles defined as theta (Ɵ) and phi (Φ) with the result of the scan, which Ɵ was significantly 

higher in abnormal scan compared to normal scan and Φ was significantly higher in normal scan 

compared to abnormal scan. It has been shown that Ɵ can diagnose the abnormal scan with 

sensitivity and specificity of 98% and 80%, respectively. In addition, Φ with sensitivity and 

specificity of 56% and 81% can diagnose normal scans. Therefore, they can be used for the 

interpretation of MPI, quantitatively. In addition, there was no significant relationship between 

these angles with sex, age, diabetes, and hypertension. 

In this study, we have demonstrated the possibility of quickly assessing the Left Ventricular Axis 

of the Heart using SPECT Images - as a substitute for LV long axis function - during routine gated 

cardiac SPECT protocol. To our knowledge, this is the first evidence of the diagnostic value of 

assessing LV long axis function using universally obtained cardiac SPECT images. 

The function of the long axis is essential for the mechanics of the heart. Firstly, it helps with 

ventricular ejection by decreasing the size of the long axis left ventricle cavity. Secondly, during 

early diastole, the energy stored during systole creates suction in the ventricle, which is crucial for 

quick filling of the ventricle at low pressures in a healthy heart [2, 34]. 

The assessment of left ventricular long axis function using echocardiography has demonstrated its 

predictive value for negative cardiovascular outcomes in various conditions, such as atrial 

fibrillation, post-myocardial infarction, heart failure, and tetralogy of Fallot [35]. Recently, there 

has been significant interest in the prognostic potential of echo-derived global longitudinal strain, 

which has been found to forecast a range of adverse outcomes in different populations, including 

acute myocardial infarction, ischemic cardiomyopathy, heart failure (with reduced or preserved 

ejection fraction), aortic stenosis, tetralogy of Fallot, amyloidosis, post-heart transplantation, and 

post-anthracycline therapy [36]. Additionally, echo global longitudinal strain has been shown to 

independently predict the development of atrial fibrillation in a community-based cohort [37]. 
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Korosoglou et al. utilized CMR to demonstrate that strain encoded magnetic resonance imaging 

(SENC) offered additional predictive value for patients undergoing dobutamine stress CMR [38]. 

More recently, Buss et al. showed that left ventricular longitudinal strain, evaluated using 

specialized CMR feature tracking software, independently predicts survival in dilated 

cardiomyopathy [39]. However, the analysis of strain using CMR has traditionally relied on 

specialized software, leading to limited adoption of these techniques in clinical practice. 

This study is conducted at a single center and is observational in nature, thus it possesses the 

limitations adherent to this type of study design. Therefore, despite the adjustment for various 

clinically relevant factors, it is probable that some degree of residual confounding still exists. Our 

study had some drawbacks. First, we reported the primary results of our designed algorithm in the 

stress phase and, therefore, for better decision, the result of the rest phase should be added. Second, 

for more accurate result, the relationship between cardiac defect intensity and the variation in 

LVAA should be evaluated. In addition, we tried to outline the mechanism and influencing factors 

of LVAA with the anticipation of the routine application of these measurements in clinical 

practice. However, in what approach this information will be of use in clinical scenarios remains 

unclear. We await the day when such quantitative measurements are recognized as a new 

assessment of cardiac function. Verification of such data to large groups of patients who also have 

gold standard outcome measures is highly required.  

 

CONCLUSION 

It can be concluded that LVAA as a quantitative factor is significantly different between normal 

and abnormal MPS and can be used for the evaluation of MPS. However, further studies are needed 

for its application in clinical practice. 
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Table 1. The results of algorithm on the cardiac of XCAT phantoms and their reconstructed 

SPECT images 

 

Gender Age Weight 

(kg) 

Height 

(cm) 

BMI Φ Ɵ Φ(phantom) Ɵ(phantom)  

Male 36 87 176 24.38 35.05 59.35 38.34 62.09  

Male 33 70 176 22.35 35.16 59.11 34.81 63.86  

Male 67 89 178 28.22 35.08 57.87 38.08 60.70  

Female 47 63 174 20.81 39.60 59.69 39.07 60.43  
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Table 2. Baseline characteristics of patients 

 

 All patients 

(n=94) 

Normal scan 

(n=53) 

Abnormal scan 

(n=41) 

Age (meanSD) 65.6510.04 67.1510.03 63.719.83 

Sex 

Male 

Female 

 

48 (51%) 

46 (49%) 

 

24 (45%) 

29 (55%) 

 

24 (58%) 

17 (42%) 

Ɵ (meanSD) 101.4435.84 78.8624.68 130.6225.44 

Φ (meanSD) 40.1910.61 42.739.68 36.9010.95 
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Fig 1. The short-axis view of cardiac of XCAT phantom (A) and its reconstructed SPECT (B). 

Estimated ellipse of heart in short-axis view (red dots are the center of the ellipse) (C) and 

estimated position of the left ventricular anatomical axis (LVAA) in the long axis view (D) 
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Fig 2. An example of image segmentation and achievement of the left ventricular anatomical axis 

(LVAA) with angles for an abnormal scan (A) and a normal scan (B) 
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Fig 3. The receiver operating characteristic (ROC) curve of Ɵ (A) and Φ (B) 
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Fig 4. The results support vector machine (SVM) classification (whatever color of the lines moves 

to purple, that line is the boundary of classification) 

  



18 
 

 

 

Fig 5. The results of recall (A), precision (B), area under the curve (AUC) (C), and receiver 

operating characteristic (ROC) curve (D) for support vector machine (SVM) classification (model 

1: Ɵ and Φ, model 2: Ɵ, model 3: Φ) 

 


