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ABSTRACT 

Introduction: A deep learning pipeline consisting of two deep convolutional neural networks 

(DeepCNN) was developed, and its capability to differentiate uptake patterns of different 

radiopharmaceuticals and to further categorize PET images based on the body regions was 

explored.  

Methods: We trained two sets of DeepCNN to determine (i) the type of radiopharmaceutical 

([18F]FDG and [68Ga]Ga-PSMA) used in imaging (i.e., a binary classification task), and (ii) 

body region including head and neck, thorax, abdomen, and pelvis (i.e., a 4-class classification 

task), using the 2D axial slices of PET images. The models were trained and tested for five 

different scan durations, thus studying different noise levels. 

Results: The accuracy of the binary classification models developed for different scan duration 

levels was 98.9%–99.6%, and for the 4-class classification models in the range of 98.3%–99.9 

([18F]FDG) and 97.8%–99.6% ([68Ga]Ga-PSMA). 

Conclusion: We were able to reliably detect the type of radiopharmaceutical used in PET 

imaging and the body region of the PET images at different scan duration levels. These deep 
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learning (DL) models can be used together as a preliminary input pipeline for the use of models 

specific to a type of radiopharmaceutical or body region for different applications and for 

extracting appropriate data from unclassified images. 

 

Keywords: Positron emission tomography; Deep learning; Categorization; [18F]FDG; 

[68Ga]Ga-PSMA 

 

INTRODUCTION 

Medical imaging is an essential tool for diagnosing and determining the prognosis of different 

diseases, which provides valuable information about patients' health status by acquiring 

quantitative, semi-quantitative, and qualitative data from the regions of interest. Nuclear 

medicine imaging utilizes nuclear interactions of the matter (i.e., injected radionuclide or 

radiopharmaceutical) as a medium for imaging and can thus provide molecular and metabolic 

information from the region scanned. Positron emission tomography (PET) is a subset of 

nuclear medicine imaging techniques commonly used to acquire metabolic data in a wide range 

of pathologies, including tumors, and offers numerous applications in oncology, neurology, 

and cardiology [1–4]. Fluorodeoxyglucose ([18F]FDG) and gallium-68-prostate-specific 

membrane antigen ([68Ga]Ga-PSMA) are examples of radiopharmaceuticals used in positron 

emission tomography/computed tomography (PET/CT) imaging to acquire images of different 

body parts and enable the monitoring of disease progression and treatment planning [5,6].  

Artificial intelligence (AI) methods, including machine learning (ML) and deep learning (DL) 

[7], have found their role in medical imaging research with diverse applications such as 

classification, segmentation, super-resolution, and low-vision problems [4, 8–17]. 

Successful implementation of AI methods depends on the quality (i.e., balanced dataset, noise-

free images, etc.) and quantity of the data. As for most medical imaging applications of AI, 

there has always been a lack of labeled data to be used in supervised learning tasks hindering 

the satisfactory development of AI models. 

Increased dependence on medical imaging techniques for disease diagnosis and treatment 

planning over the years have resulted in acquiring massive collections of patient data, including 

images acquired via different imaging modalities, such as magnetic resonance imaging (MRI), 

computed tomography (CT), nuclear medicine imaging, etc. The manual organization of these 

large datasets requires considerable time and effort, and this tedious work is often prone to 

erroneous and disorganized datasets when performed manually because of the declining human 

performance with an increase in workload. 

Categorizing PET images based on the radiopharmaceutical used and body region can 

efficiently organize the available image data for developing more robust and reliable AI models 

with the help of a more sophisticated dataset. Previously, DL models have been used to classify 

PET images based on several aspects. Wang et al. [18] investigated the strategies of adapting 

a previously developed automatic anatomy recognition (AAR) [19] system using fuzzy models 

to PET ([18F]FDG) and low-dose CT in three categories of thoracic, abdominal, and pelvic 

regions. By evaluating size estimation and localization errors, they achieved noticeable results. 

Qayyum et al. [20] used a DeepCNN to classify multi-modality images into 24 organ-based 

classes and achieved an average accuracy of 99.77% and mean average precision of 0.69%. To 

the best of our knowledge, there has been no study classifying PET images based on the 

radiopharmaceutical type at different time scan levels with various peak signal-to-noise ratios 

(PSNR) and noise levels. 

In the current study, we employed DeepCNNs to provide an input data pipeline capable of 

discriminating [18F]FDG and [68Ga]Ga-PSMA PET axial images (binary classification) and 

then categorizing these images into four anatomical regions including head and neck, thorax, 

abdomen, and pelvis (4-class classification). To simulate different noise level present in axial 
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images, we developed different models using images post-reconstructed with various scan 

durations (standard, one-half, one-fourth, one-eighths, and one-sixteenth). Furthermore, we 

tested different combination of DL network hyperparameters to find the best combination 

appropriate for the specific application. 

The proposed models can determine the type of radiopharmaceutical used in imaging and 

categorize axial images based on the body region; thus, they can be used for automatic 

categorization and archiving of PET images available at different noise levels for two 

radiopharmaceuticals, alleviating the problem of the considerable amount of unused data. 

Automating the tedious but straightforward process of image labeling based on 

radiopharmaceuticals and the body regions. As for the different noise levels covered in this 

study, the developed models can be adopted to categorize images acquired from various PET 

imaging devices, thereby broadening the generalizability of the proposed models. 

This paper is structured as follows: Section 2 elaborates the specific procedures undertaken to 

prepare the dataset, briefly introduces the necessary concepts, and explains the methods in 

detail. Results are presented in Section 3 and discussed in Section 4. Finally, conclusions are 

drawn in Section 5. 

 

METHODS 

Dataset 

The dataset is consisted of PET axial images of 20 patients (10 for each radiopharmaceutical), 

acquired with two radiopharmaceuticals ([18F]FDG or [68Ga]Ga-PSMA) using a GE Discovery 

PET/CT scanner. For each radiopharmaceutical, the patients were scanned using the standard 

scan duration (denoted with 𝑆1) and retrospectively reconstructed using one-half (𝑆1
2⁄ ), one-

fourth (𝑆1
4⁄ ), one-eighth (𝑆1

8⁄ ), and one-sixteenth (𝑆1
16⁄ ) of the standard scan duration to 

mitigate different noise levels. For 4-class classification, each dataset was further split into four 

balanced categories using corresponding computed tomography (CT) images of PET slices: 

head and neck, thorax, abdomen, and pelvis. For binary classification, the corresponding sub-

series of each radiopharmaceutical (e.g., 𝑆1) were compiled to prepare a balanced dataset 

comprising two classes: [18F]FDG and [68Ga]Ga-PSMA. More details on patient data and 

datasets are presented in Tables 1 and 2. Peak signal-to-noise ratio (PSNR) was calculated by 

considering sub-series 𝑆1 as Ground Truth. 

 

Architecture of the input pipeline and deep learning models  

This input pipeline consists of two separate sets of DeepCNNs developed for binary 

classification specifying the type of radiopharmaceutical used in scanning and 4-class 

classification of images acquired with each radiopharmaceutical into categories of head and 

neck (abbreviated as H_N), thorax, abdomen, and pelvis.  

Based on Figure 1, the architectures of the models developed for binary and 4-class 

classification tasks differ. Python programming language (Version 3.7.10) was used to harness 

Keras API (Version 2.3.1) on the TensorFlow Backend (Version 2.1.0). Image files were 

originally DICOM files, but for the training and testing purposes and privacy concerns, only 

the pixel data of the files were extracted and saved as JPEG images and then used in training 

and testing. The models received two-dimensional axial images with three channels (192, 192, 

3) as the input without any specific pre-processing. The models used in this study were 

composed of four consecutive blocks, each block containing two components: 1) a 2-D 

convolutional layer (with rectified linear unit (ReLU) activation function) followed by 2) a 

maximum pooling layer with a stride of 2 and pooling size of (2, 2). These four consecutive 

layers were followed by two fully-connected (dense) layers. The activation function of the first 

dense layer was ReLU, while for outputting a probability, the activation function of the second 
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dense layer was the Softmax function for 4-class classification and the sigmoid function for 

binary classification. Another difference between the models developed for binary and 4-class 

classification was the filter values of each successive convolutional layer. Unlike 4-class 

classification models, an L2 layer weight regularizer was used for each convolutional layer of 

binary classification network. For binary classification, the convolutional kernel size was 

constant (3, 3), whereas, for the 4-class classification task, two kernel sizes (3, 3) and (5, 5) 

were explored.  

The models were implemented using an NVIDIA GeForce GTX 950M Graphics Processing 

Unit (GPU) with 4 GB of dedicated memory and an Intel(R) Core (TM) i7-4720HQ CPU with 

a base frequency of 2.60GHz. 

 

Training and testing strategies for deep learning methods 

Binary classification 

Models with the same architecture were developed for each sub-series (i.e., 𝑆1 –𝑆1
16⁄ ) prepared 

for this task. A 5-fold nested cross-validation strategy [21] was followed for training and 

testing, i.e., in each fold 70% of the data was dedicated to training, 10% to validation, and the 

remaining 20% to testing. Details about the multiple hyperparameter value settings of the 

implemented models and other training and testing properties are given in Table 3. 

 

4-Class classification 

For this 4-class classification task, we followed a different path. For each sub-series of 

radiopharmaceuticals, a model with the same basic architecture but different hyperparameters 

(batch size, learning rate, and kernel size) was repeatedly trained for three times to find the 

combination offering better results which resulted in 360 trained models (when repeated for 

three times). A 5-fold nested cross-validation strategy was used (70% of the data for training, 

10% for validation, and the remaining 20% for testing) (Refer to Table 3 for further details 

including training times). 

 

Classification evaluation metrics 

The metrics used for evaluating the performance of DL the classification models measure 

various aspects of their performance. Thus, we evaluated ten metrics (accuracy, precision, 

sensitivity, specificity, negative predictive value, false positive rate, false negative rate, F1-

score, Matthews correlation coefficient, and area under the receiver operating characteristic 

curve (AUC)) for each of the binary/4-class classification model; however, for the sake of 

brevity, we will only report average accuracy, recall (sensitivity), F1-score, and the (AUC) 

metrics for all folds, and plot the confusion matrix and ROC curves of the folds with the best 

results in each sub-series. 

Accuracy measures how well and precisely the model predict the class of all the samples 

present in the dataset, representing the proportion of correct predictions [22, 23] (Equation 1).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (1) 

 

In equation 1, TP, TN, FP, and FN represent true positive, true negative, false positive, and 

false negative instances (the acceptance threshold was set to 0.5). 

The ratio of the true positive predictions to the total positive predictions is reported using the 

recall or sensitivity metric [23] (Equation 2). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2) 
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The harmonic mean of the precision and recall metrics results in another classification 

performance metric called the F1-score [23] (Equation 3). ROC curve is a tool for measuring 

the accuracy of methods, and the AUC is a value summarizing it. An AUC value of 0.5 shows 

that the method has no diagnosis capability, while values close to 1 are preferred [24]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
 2 × (𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
      (3) 

 

RESULTS 

Binary Classification Results 

The purpose of binary classification is to determine the radiopharmaceutical used in PET 

imaging ([18F]FDG or [68Ga]Ga-PSMA) based on PET images in each noise level (e.g., 𝑆1). 

We followed a 5-fold nested cross-validation approach for training, validation, and testing. 

Table 4 summarizes the macro average results of all folds of the binary classification task for 

each sub-series. Figure 2 presents the confusion matrices of the folds with the best results in 

the binary classification task in each sub-series. ROC curves are present in Figure 3. The 

GradCam [12, 25] is a helpful tool to improve the transparency of the decision made by CNNs 

by showing the regions of the images triggering the CNN to decide. In Figure 4, GradCam 

illustrations of the binary classification models for different scan durations are plotted. 

 

4-Class classification 

For each sub-series of the two radiopharmaceuticals, 12 DeepCNN models were developed 

using various combinations of hyperparameters, and each model was trained and evaluated 

three times using a one-held-out validation approach. In Table 5, hyperparameters settings and 

classification metrics are reported only for the model with the best performance based on 

confusion matrices. In Figure 5, Confusion Matrices are displayed for each 

radiopharmaceutical. Figure 6 presents the GradCam illustration of the 4-class classification 

models in multiple sub-series and various regions of the body. ROC curves are also present in 

Figure 7. Some combinations of the hyperparameters led to the model collapsing (classifying 

all classes as one) are summarized in Table 6.  

 

DISCUSSION 

We developed an input pipeline consisting of two sets of Deep CNN models for two purposes: 

1) determining the radiopharmaceutical used in PET imaging based on PET images (binary 

classification), 2) categorizing PET images into four anatomical categories, namely head and 

neck, thorax, abdomen, and pelvis (4-class classification). 

Although sub-series 𝑆1
16⁄  was reconstructed using 1/16th of the standard scan duration of sub-

series 𝑆1 in the binary classification task, accuracy decreased from 99.55 to 98.94 (5-fold nested 

cross-validated and averaged), representing model robustness in dealing with noise level since 

the PSNR of the acquired images can differ based on scan duration, different patient 

physiology, etc. Similar to accuracy, recall, and F1-score did not change significantly, from 𝑆1 

to 𝑆1
16⁄ , despite the differences in PSNR and scan duration (Table 4).  

In Figure 4, the GradCam illustration of the models used for binary classification is depicted 

in each sub-series and for both radiopharmaceuticals. There are two images for each 

radiopharmaceutical in this figure, the original image (on the left) and the same image but with 

GradCam heat maps (on the right). The CNN model decides to classify images based on regions 

with a noticeable uptake specific to that region. For instance, in sub-series 𝑆1, the model decides 

to classify images based on radiopharmaceutical uptake in temporal regions of the brain; in the 
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case of [68Ga]Ga-PSMA in sub-series 𝑆1
2⁄ , the model decides based on the uptake in the hepatic 

region.  

Categorizing images into different body regions can help develop more sophisticated tools such 

as computer-aided diagnosis (CAD) systems and different DL models for super-resolution and 

segmentation. So 4-class classification results are reported in Table 5. In terms of model 

hyperparameters, it is evident that a learning rate of 0.0001 and batch size of 20 mostly led to 

better results. Although the results reported in this table may not be the best quantitative results, 

they offer a good insight into the outcomes. Figure 8 depicts the scatter plots of 4-class 

classification models and classification metrics, indicating that most models with different 

combinations of hyperparameter values had a similar performance. 

Table 5 reports the classification metrics of 4-class classification for each sub-series of 

radiopharmaceuticals. Accuracy decreased from 99.89% (𝑆1) to 98.30% (𝑆1
16⁄ ) for the 

[18F]FDG, and from 99.16% (𝑆1) to 97.84% (𝑆1
16⁄ ) for the [68Ga]Ga-PSMA. These values are 

the average of all the classes (head and neck, thorax, etc.). Note that these values were higher 

for classes without any overlapping regions; nevertheless, since there is not a definitive 

separation between body regions, and there is some tissue overlap (e.g., the liver can be seen 

in the same axial slice as the lungs), it is expectable for the models to mistake some thoracic 

slices as abdominal and can be a reason the overall accuracy of classification can decrease to 

some extent.  

Some 4-class classification models collapsed meaning that all classes were classified as one 

(Table 6). The shared trait of all the collapsed models was a learning rate of 0.001, which could 

explain their inability to learn. However, the results are not conclusive for other 

hyperparameters. Moreover, 70% of the crashed models had a batch size of 30, and 82% of 

them had a kernel size of (5, 5) which was 100% in the case of the models used for classifying 

[18F]FDG images. Larger kernel sizes mean that the convolutional kernel's scope is broader, 

which could explain why these models failed to identify delicate local patterns. 

This study has some limitations. Firstly, this study is a part of the series of studies to employ 

DL for PET image processing, and the aim may be confusing at first sight. Nevertheless, the 

capability to identify the radiopharmaceutical and body sections on images is important 

because the findings highlight the possibility of DL employment for this purpose and enable 

the researchers to use DL preprocessing methods for further image manipulations. Second, the 

[68Ga]Ga-PSMA data came from male patients only, while the [18F]FDG data included both 

male (5) and female (5) patients. This difference is a source of imbalance in the data because 

of the different physiologies of the male and female bodies. For an ideal comparison of the 

performance of classification models, images should be acquired from the same patients 

imaged with both [68Ga]Ga-PSMA and [18F]FDG, but this is not achievable. Although the 

randomness of the CNN weights and initialization was revoked by setting the seed of 

TensorFlow and other packages used in developing the models, it is still evident that the results 

suffer from randomness, and different images trained and tested on during train and test split 

procedure (although models of 4-class classification with the same hyperparameters were 

trained three times, some of them collapsed while the others did not). 

There are multiple possibilities to further expand this study. These models were two-

dimensional DeepCNNs, and accordingly, their input was two-dimensional (2D) axial images. 

A three-dimensional (3D) DeepCNN and multi-slice input strategy could be considered, and 

additional gains from 3D DeepCNNs be explored. Transfer learning and ensemble methods 

could prove to be much more efficient by increasing the number of images acquired with 

radiopharmaceuticals other than [18F]FDG and [68Ga]Ga-PSMA, making the classification 

categories much more sophisticated classifying the images present in a body region group 

based on different organs. PET images do not provide enough anatomical information which 
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is one of the reasons to use accompanying CT images to provide anatomical context about the 

scan region of interest. At the same time, even without such anatomical context, our deep 

identification task performances were excellent. Finally, the 4-class classification task could 

be further improved to classify all axial and all anatomical regions. 

 

CONCLUSIONS 

We developed an input data pipeline consisting of two sets of DeepCNNs for categorizing PET 

images based on radiopharmaceuticals used in imaging and categorizing images into specific 

body region groups (head and neck, thorax, abdomen, and pelvis). The models included in the 

pipeline provided promising results at different noise levels denoted by sub-series 𝑆1 to 𝑆1
16⁄  

to achieve decreasing scan durations during reconstruction. Covering multiple noise levels 

ensured that trained models were generalized enough to be applicable on the real-world PET 

images. The smaller number of parameters decreases the possibility of the model memorizing 

data instead of learning patterns required for seamless image classification, thereby promoting 

model generalization. DeepCNNs presented in the pipeline were successfully capable of 

classifying PET images based on radiopharmaceutical used and further categorization 

according to anatomical region without the help of additional anatomical data from 

corresponding CT images. 
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Table 1. Demographic information for patients including Sex, Age, and Body Mass Index (BMI) present in our study  

 

BMI: Body Mass Index, Min: Minimum, STD: Standard Deviation, Max: Maximum  

 

 

Radiopharmaceutical 
Number of 

Patients 
Sex 

Age BMI 

Min Mean ± STD Max Min Mean ± STD Max 

[18F]F-FDG 
5 M 18 51 ± 21 75 17.3 25.0 ± 5.1 30.3 

5 F 40 55 ± 12 72 15.0 26.1 ± 7.3 34.1 

[68Ga]Ga-PSMA 10 M 59 73 ± 7 86 22.9 25.7 ± 2.7 29.9 
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Table 2. Datasets for the different classification tasks. For each dataset, scan duration and peak signal-to-noise ratio is present 

Classification Task Radiopharmaceutical Sub-series 

Number of 

axial slices for 

each category 

Total Scan Duration 

(Second) 

(Mean ± STD) 

PSNR 

(Mean ± STD) 

Head and Neck Thorax Abdomen Pelvis 

4-class 

[18F]F-FDG 

𝑆1 550 674.5 ± 101.5 GT GT GT GT 

𝑆1
2⁄  550 331.9 ± 36.7 47.30±5.88 47.10±6.14 44.60±6.51 45.51±6.06 

𝑆1
4⁄  550 166.9 ± 17.9 42.74±6.43 42.41±6.81 39.98±7.10 40.99±6.52 

𝑆1
8⁄  550 85.1 ± 8.6 39.53±6.22 39.28±6.82 36.87±6.97 37.86±6.48 

𝑆1
16⁄  550 43.3 ± 4.4 35.70±6.90 35.68±35.68 33.35±7.45 34.60±6.70 

[68Ga]Ga-PSMA 

𝑆1 520 600 GT GT GT GT 

𝑆1
2⁄  520 300 53.48 ± 4.09 51.50 ± 1.98 43.30±1.56 50.83±2.24 

𝑆1
4⁄  520 150 50.70 ± 4.18 47.41±3.60 40.50±2.81 46.07±3.59 

𝑆1
8⁄  520 75 47.42 ± 4.40 44.12±3.64 36.82±2.86 42.88±3.63 

𝑆1
16⁄  520 40 44.87 ± 4.34 41.42±3.52 34.10±2.78 40.37±35.70 

 [18F]F-FDG [68Ga]Ga-PSMA 

Binary [18F]F-FDG /[68Ga]Ga-PSMA 

𝑆1 2600 637.25±79.62 GT GT 

𝑆1
2⁄  2600 315.95±30.12 46.15±6.21 51.60±5.30 

𝑆1
4⁄  2600 158.45±15.05 41.54±6.76 46.39±5.11 

𝑆1
8⁄  2600 80.05±7.84 38.41±6.65 43.04±5.29 

𝑆1
16⁄  2600 41.65±3.45 34.83±7.09 40.43±5.28 

 

PSNR: Peak signal-to-noise ratio; GT: Ground Truth
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Table 3. Model architectures and implementation details 

Classification Task Radiopharmaceutical Sub-series Optimizer Loss Function Learning Rate Batch Size Kernel Size Epochs Regularizer 

Average Training Time (s) 

(mean ± STD) 

Average Testing Time (s) 

(mean ± STD) 

Binary 
[18F]F-FDG /[68Ga]Ga-

PSMA 

S1 

ADAM 
Binary Cross-

Entropy 
0.0001 30 (3,3) 70 L2 

491.08±1.35 1.21±0.06 

S1/2 
502.92±15.13 1.34±0.22 

S1/4 
509.53±5.31 1.56±0.47 

S1/8 
493.71±3.33 1.31±0.11 

S1/16 
496.73±3.08 1.26±0.06 

4-class 

[18F]F-FDG 

S1 

ADAM 
Categorical Cross-

entropy 

0.001/0.0001 /0.00001 
20/30 (3,3)/(5,5) 100 - 

454.56±60.63 0.59±0.07 

S1/2 456.64±64.70 0.61±0.09 

S1/4 454.18±59.25 0.60±0.07 

S1/8 452.56±57.66 0.64±0.28 

S1/16 460.45±63.96 0.66±0.23 

[68Ga]Ga-PSMA 

S1 

ADAM 
Categorical Cross-

entropy 

0.001/0.0001 /0.00001 
20/30 (3,3)/(5,5) 100 - 

423.18±56.33 0.56±0.07 

S1/2 424.72±56.40 0.58±0.09 

S1/4 430.11±57.17 0.59±0.09 

S1/8 432.57±59.96 0.63±0.16 

S1/16 426.88±57.12 0.59±0.08 
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Table 4. Binary classification results.* 

Sub-series Accuracy Sensitivity F1-score AUC Training time (s) Prediction time (s) 

𝑺𝟏 0.996±0.003 0.996±0.002 0.996±0.003 0.996±0.003 491.08±1.35 1.21±0.06 

𝑺𝟏
𝟐⁄  0.994±0.002 0.995±0.002 0.994±0.002 0.994±0.002 502.92±15.13 1.34±0.22 

𝑺𝟏
𝟒⁄  0.994±0.003 0.994±0.003 0.994±0.003 0.994±0.004 509.53±5.31 1.56±0.47 

𝑺𝟏
𝟖⁄  0.990±0.002 0.992±0.002 0.992±0.002 0.992±0.002 493.71±3.33 1.31±0.11 

𝑺𝟏
𝟏𝟔⁄  0.989±0.004 0.989±0.004 0.989±0.004 0.989±0.004 496.73±3.08 1.26±0.06 

 

AUC: Area under the curve 

 *: In order to differentiate values, the accuracy, sensitivity, f1-score, and AUC results presented in this table are reported with more fraction digits than the rest of the results presented in this 

study 
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Table 5. Results for 4-class classification, and the corresponding hyperparameters settings. Results are reported as average over all classes. 

Radiopharmaceutical Sub-series 
Kernel 

Size 

Learning 

Rate 

Batch 

Size 
Accuracy Sensitivity F1-score AUC 

Training 

Time 

(s) 

Prediction 

Time 

(s) 

[18F]F-FDG 

𝑆1 (3,3) 0.001 20 0.999 0.998 0.999 1.0 395.84 0.80 

𝑆1
2⁄  (5,5) 0.0001 20 

0.996 0.991 0.998 
1.0 524.07 0.61 

𝑆1
4⁄  (3,3) 0.0001 20 

0.998 0.996 0.997 
1.0 399.49 0.55 

𝑆1
8⁄  (5,5) 0.001 30 

0.993 0.986 0.995 
1.0 494.99 0.61 

𝑆1
16⁄  (3,3) 0.0001 20 

0.983 0.966 0.993 
1.0 399.02 0.55 

[68Ga]Ga-PSMA 

𝑆1 (3,3) 0.0001 20 0.992 0.998 0.998 1.0 371.22 0.50 

𝑆1
2⁄  (5,5) 0.0001 20 

0.996 0.991 0.991 
1.0 496.90 0.58 

𝑆1
4⁄  (3,3) 0.0001 20 

0.993 0.996 0.996 
1.0 378.72 0.52 

𝑆1
8⁄  (5,5) 0.0001 30 

0.988 0.986 0.986 
0.996 480.10 0.61 

𝑆1
16⁄  (5,5) 0.0001 30 

0.978 0.966 0.966 
0.995 469.27 0.60 
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Table 6. Hyperparameter setting of collapsed models 

Radiopharmaceutical Sub-series Kernel Size Learning Rate Batch Size 

[68Ga]Ga-PSMA 

𝑆1 (5,5) 0.001 30 

𝑆1
2⁄  

(3,3) 0.001 30 

(5,5) 0.001 30 

𝑆1
4⁄  

(3,3) 0.001 20 

(5,5) 0.001 30 

𝑆1
8⁄  (5,5) 0.001 30 

𝑆1
16⁄  

(3,3) 0.001 30 

(5,5) 0.001 30 

[18F]F-FDG 

𝑆1 

(5,5) 0.001 30 

(5,5) 0.001 20 

𝑆1
2⁄  

(5,5) 0.001 20 

(5,5) 0.001 30 

(5,5) 0.001 20 

𝑆1
4⁄  (5,5) 0.001 30 

𝑆1
8⁄  

(5,5) 0.001 20 

(5,5) 0.001 30 

𝑆1
16⁄  (5,5) 0.001 30 
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Fig 1. Model architectures used for binary and 4-class classification tasks. Four blocks of convolution and 

maximum pooling layers are followed by a flattening layer. Finally, two fully-connected (dense) layers are added 

to the end of the models 
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Fig 2. Confusion matrices of folds with the best results in each sub-series of binary classification task. S1, S1/2, 

S1/4, S1/8 and S1/16 denote different scan duration fractions at which binary classification task was explored 
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Fig 3. Receiver Operating Characteristic Curves (ROC) of folds with the best results in each sub-series of binary 

classification task 
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Fig 4. GradCam illustration for binary classification models in different sub-series and radiopharmaceuticals 
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Fig 5. (Above): Confusion Matrices of models with the best results in [18F]FDG radiopharmaceutical. S1, S1/2, S1/4, 

S1/8 and S1/16 denote different scan duration fractions at which [18F]FDG 4-class classification task was explored  

(Below): Confusion Matrices of models with the best results in [68Ga]Ga-PSMA radiopharmaceutical. S1, S1/2, 

S1/4, S1/8 and S1/16 denote different scan duration fractions at which [68Ga]Ga-PSMA 4-class classification task was 

explored. As expected, S1/16 in both [18F]FDG and [68Ga]Ga-PSMA had the higher incidence rate of 

misclassification. It is also notable that sum of all misclassification cases for all five levels was higher in [68Ga]Ga-

PSMA than [18F]FDG which indicates the fact that [18F]FDG is a general-purpose radiopharmaceutical compared 

with [68Ga]Ga-PSMA 
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Fig 6. (Above): GradCam illustrations for 4-class Classification of [18F]FDG Radiopharmaceutical.  The CNN 

successfully classifies images based on the structures specific to a particular region (e.g., Gray and White matter 

of the brain or mediastinum of the thoracic region). It is noticeable that with decreasing PSNR (from S1 to S1/16) 

the pinpointing accuracy of structures decreases in some regions (abdomen and pelvis) 

(Below): GradCam illustrations for 4-class Classification of [68Ga]Ga-PSMA Radiopharmaceutical. Just like 

[18F]FDG, the CNN again successfully classifies images based on the structures specific to that special region 

(e.g., liver and spleen in abdominal region and bladder in Pelvic area). Since [68Ga]Ga-PSMA is a specific 

radiopharmaceutical used in prostate cancer imaging; thus, its uptake in other body regions is not as prominent as 

[18F]FDG, a multi-purpose radiopharmaceutical 
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Fig 7. (Above): Receiver Operating Characteristic curves (ROC) of models with the best results in [18F]FDG 

radiopharmaceutical. (Below): Receiver Operating Characteristic Curves (ROC) of models with the best results 

in [68Ga]Ga-PSMA radiopharmaceutical 
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Fig 8. Scatter plots of 4-class classification models (x-axis) and classification metrics 


