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ABSTRACT 
 

Introduction: Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent used as a radiopharmaceutical compound, 99mTc-
DTPA, for renography. Doxorubicin (DOX) on the other hand is an effective chemotherapy drug used to treat a variety of solid 
malignancies.  Both 99mTc-DTPA and DOX may be used in close succession in patients undergoing DOX based chemotherapy to 
evaluate renal function. This study aims to investigate the possible alteration in the biodistribution of 99mTc-DTPA when given in 
combination with DOX in rats.  
Methods: The study was divided in two arms; a control group (n=10) where 99mTc-DTPA alone and the experimental group (n=30) 
where DOX was injected prior to 99mTc-DTPA administration. The experimental group was further divided into six subgroups (n=5 
each) based on the time intervals (4, 8, 18, 36, 72, 96 hours) between DOX and 99mTc-DTPA administration. In each group, the 
subjects were sacrificed 2 hours post 99mTc-DTPA injection, the organs isolated and counted for radioactivity. 
Results: The results revealed that the percent total retained dose (%TRD) significantly (p<0.001) decreased in urinary tract while 
significantly (p<0.001) increased in liver and biliary tree as compared to the experimental group.  
Conclusion: The results of this pre-clinical study put the accuracy of renal scintigraphy in question in patients receiving DOX based 
chemotherapy. However, human studies are proposed for validity of results with regards to clinical practice. 
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INTRODUCTION 

Radio-labeling of acetic 
Diethylenetriaminepentaacetic acid (DTPA), a 
chelating agent for heavy metals, with sodium 
pertechnetate Tc-99m result in the formation of 
radiopharmaceutical 99mTc-DTPA. The exclusive 
renal mode of clearance for 99mTc-DTPA promotes its 
utilization in scintigraphy study of kidneys [1-3]. 
Specifically, the intravenously administered 99mTc-
DTPA is filtered by the renal glomeruli thereby 
allowing to measure glomerular filtration rate (GFR) 
[4]. Amongst the various indications of 99mTc-DTPA 
in clinics, GFR is measured in cancer patients prior to 
or following chemotherapy to assess renal function/ 
toxicity of the chemotherapy drug with suspected 
nephrotoxicity [5], such as Doxorubicin. 
Doxorubicin (DOX) is an anthracycline having a 
broad spectrum of antineoplastic activity and widely 
used in the treatment of solid malignancies such as 
breast cancer, lymphomas, sarcomas and 
gynecological cancers. The pharmacokinetics (PKs) of 
DOX has indicated that, after intravenous 
administration, its levels in the blood reduce radically 
as it distributes into tissues. Afterward, a slow 
elimination phase due to renal and biliary clearance 
and metabolism of the drug follows [6]. DOX can 
react with several cellular components to induce the 
antitumor and toxic effects. Specifically, DOX is 
capable of DNA intercalation and alkylation, 
interaction with topoisomerase II, inhibition of RNA 
and DNA polymerase [7-9]. Moreover, DOX can 
generate reactive oxygen species (ROS) through 
quinone redox cycling and perturb cellular Ca2+ 
concentrations via both receptor-mediated and redox-
mediated pathways [10]. The ability of DOX to 
increase the plasma concentration of free iron is 
ascribed to its metal chelating properties [11, 12]. 
Many have suspected that the biodistribution of 
radiopharmaceuticals (e.g., 99mTc-DTPA) may be 
altered by concurrent administration of chemotherapy 
drugs. The drug-radiopharmaceutical interactions 
(DRIs) may arise due to the pharmacologic action of 
the drug or because of physicochemical interactions 
between the radiopharmaceutical and the drug such as 
alteration in the chemical identity of the 
radiopharmaceutical. Indeed, a considerable body of 
evidence on such DRIs supports this hypothesis [12-
17].  
Importantly, the biodistribution of 
radiopharmaceuticals appears to significantly change 
by drugs that alter the functional status of the organ. 
Consequently, the biodistribution of 
radiopharmaceutical will depend on the organ of 
interest, chemical class of the drug, given 
radiopharmaceutical and DRI [18]. Such altered 
biodistribution of radiopharmaceuticals can 

significantly impact the interpretation of scintigraphy 
study and diagnostic imaging accuracy. In extreme 
manifestations, such imaging results may even 
compromise the accuracy/utility of nuclear medicine 
studies. That said, we designed this study to assess the 
impact of chemotherapy drug on the biodistribution of 
radiopharmaceuticals. Specifically, the present study 
aims to investigate the possible alterations in the 
biodistribution of 99mTc-DTPA in rats following the 
administration of DOX. 
 

METHODS 
The animals (i.e., Sprague Dawley male rats with a 
mean age of 6 weeks) were acquired from National 
Institute of Health (NIH), Pakistan and given free 
access to food and water. The study was approved by 
the animal ethical committee of NIH, Pakistan. 
National Institute of Health (NIH), Pakistan and given 
free access to food and water. The study was approved 
by the animal ethical committee of NIH, Pakistan. 
Freeze dried kits of DTPA were prepared by Isotope 
Production Division (IPD) of Pakistan Institute of 
Nuclear Science and Technology (PINSTECH). Tc-
99m was obtained from Mo-99/Tc-99m generators, 
manufactured by IPD, PINSTECH. Platform for 
radiolabeling of DTPA kits with Tc-99m, the quality 
control and bio-distribution of 99mTc-DTPA in animals 
was also provided by IPD, PINSTECH.  
Doxorubicin Hydrochloride was purchased from 
Pfizer, Pakistan in injectable form and the reference 
dose for rats was calculated by finding a dose 
equivalent to 50 mg/m2 in humans with the help of 
“Equivalent Surface Area Dosage Conversion Factors 
[19]. The dose to be administered came out to be 9.46 
mg/kg. The mean weight of the rats used in the study 
was 55g so that the actual administered dose to each 
rat was 0.5 mg.  
 
Biodistribution study 
The study was divided into two arms; a control group 
(n=10) where 0.1 mCi of 99mTc-DTPA alone was 
injected intravenously into the tail vein of the rats and 
the experimental group (n=30) where 0.5 mg DOX 
was injected prior to 99mTc-DTPA (0.1 mCi) 
administration. The experimental group was further 
divided into six subgroups (n=5 each) based on the 
time intervals (4, 8, 18, 36, 72, 96 hours) between 
DOX and 99mTc-DTPA administration. The animals 
were randomly assigned to each of the time-point 
groups. Figure 1 illustrates the schematic of all 
experimental steps involved in this study. 
In each group, the rats were sacrificed after two hours 
of the 99mTc-DTPA injection, selected organs (i.e., 
liver, spleen, stomach, intestines, lungs kidneys, 
femur, bladder, heart, and carcass) were isolated, 
washed with saline, dried on filter paper and weighed. 
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Fig 1. Illustration of the workflow of the study; (a) control arm where 99mTc-DTPA (0.1 mCi activity/0.02 ml solution of 99mTc-DTPA) alone 
was injected in the tail vein of the rats (n=10), (b) experimental arm where DOX (0.5 mg of Doxorubicin/0.25 ml solution) was injected X 
(=4, 8, 18, 36, 72, 96) hours prior to 99mTc-DTPA (0.1 mCi) administration in the rat tail (n = 5 in each subgroup), (c) sketch of isolated organs 
of the rats scarified 2 hrs post 99mTc-DTPA injection in both arms and (d) activity measurement in isolated organs. 

 
 
The radioactivity in each organ was counted with well-
type gamma counter and expressed as the percent total 
retained dose (%TRD), as follows 
 

% TRD =
Activity in the given organ
Total activity administered × 100        

 
The %TRD quantitatively describes the uptake of 
activity (and thereby the radiopharmaceutical) in a 
particular organ, normalized by the total activity 
administered, such that to facilitate the inter-
comparison of each organ. 
The %TRD for urinary tract was calculated as the sum 
of %TRD of kidney, bladder, and urine (which was 
collected in a filter paper). The results from the two 
groups were analyzed and compared for statistical 
significance using paired two-tail t-test. 
 

RESULTS 
The results of biodistribution study in various isolated 
organs of rats with particular emphasis on urinary tract 
and liver for both control and experimental groups are 
presented herein. 
The administered radiopharmaceutical 99mTc-DTPA is 
primarily taken up by the kidneys, rapidly passed on 
to the ureters and bladder and finally eliminated from 
the body through urine. Consequently, %TRD was 
calculated for the entire urinary tract plus urine rather 

than kidneys alone; the results are summarized in 
Figure 2 which reveal an initial increase followed by a 
progressive reduction in uptake of 99mTc-DTPA as the 
time span between the drug and radiopharmaceutical 
administration is increased. 
 

 

Fig 2. Cumulative mean %TRD of the kidney, urine and bladder in 
Control (n=10) and Experimental group (n=5 each). Time (in hours) 
on x-axis shows the gap between administration of DOX (0.5mg 
DOX/0.25 ml of saline) and 99mTc-DTPA. The error bar represents 
standard error. ( = p value < 0.05; < 0.01; < 0.001, 
calculated with two-tail unpaired t-test). 

 
The liver has been believed as the major body 
compartment for DOX accumulation; thereby liver 
constitutes an interesting target for % TRD 
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calculations in our study. The results of %TRD in the 
liver are illustrated in Figure 3.  
 

 

Fig 3. Mean %TRD of the liver in Control (n=10) and Experimental 
group (n=5 each). Time (in hours) on x-axis shows the gap between 
administration of DOX (0.5mg DOX/0.25 ml of saline) and 99mTc-
DTPA. The error bar represents standard error. ( = p value < 0.05; 
< 0.01; < 0.001, calculated with two-tail unpaired t-test). 

 
Contrary to the urinary tract, the %TRD in liver 
increased with the time interval between the drug and 
radiopharmaceutical administration. In addition, the 
%TRD for the liver is significantly lower as compared 
to the urinary tract (Figure 2). The overall activity 
being excreted via bile can be probed through the 
%TRD determined collectively for liver, intestines, 
and stool (Figure 4). 
 

 

Fig 4. Cumulative mean %TRD of the liver and intestines in Control 
(n=10) and Experimental group (n=5 each). Time (in hours) on x-
axis shows the gap between administration of DOX (0.5mg 
DOX/0.25 ml of saline) and 99mTc-DTPA. The error bar represents 
standard error. ( = p value < 0.001, calculated with two-tail 
unpaired t-test). 

 
This may also complement the observed increasing 
trend in %TRD for liver alone. The complete 
biodistribution data for all oranges has been presented 
in Table 1. 

DISCUSSION 
It has been suspected that the PK/biodistribution of 
radiopharmaceuticals may be altered by various 
factors such as recent surgery, chemotherapy, 
radiotherapy, disease states, dialysis, etc. [18]. Indeed, 
unexpected patterns of radiopharmaceutical 
biodistribution and poor visualization of organs or 
even misdiagnosis have been reported [20, 21]. The 
mentioned factors may cause variations in regional 
blood flow, metabolism and the binding of the 
radiopharmaceutical to the blood plasma [22]; 
subsequently, the distribution, uptake, retention and 
elimination of the radiopharmaceuticals are altered. 
That said, it appears essential for the physician to have 
sufficient knowledge of the altered biodistribution of 
the radiopharmaceuticals in such cases towards 
avoiding misinterpretation of the scintigraphy images 
[16]. To this end, exploring the influence of DRI on 
the biodistribution of the radiopharmaceutical, as 
studied here, would be of significant interest. 
Various important factors may contribute to the altered 
biodistribution of 99mTc-DTPA, as observed here, 
when it is given in close succession with DOX. For 
instance, DOX has a mean half-life ~ 30 hours [19, 23] 
while Tc-99m has an effective half-life ~ 4 hours in 
humans [24]. The longer half-life of DOX is believed 
to be due to its extensive binding to plasma proteins 
(~70%), as opposed to 99mTc-DTPA (~10%). Further, 
DOX being lipophilic is widely distributed in tissues 
by passive diffusion, contrary to 99mTc-DTPA which 
requires carrier-mediated transport due to its 
hydrophilic nature. Moreover, the primary metabolism 
of DOX occurs in the liver, particularly by the 
CYP3A4 subfamily of cytochrome P450 liver 
oxidases; subsequently, the metabolites are unloaded 
by bile into the stool. A minor part of DOX 
metabolites is also eliminated via kidneys. 
Alternatively, 99mTc-DTPA is not metabolized in the 
body and quickly gets filtered by the renal glomeruli 
towards elimination from the body via urine. 
Previously, several natural and/or synthetic drugs have 
been speculated to alter the biological effect of the 
radiopharmaceutical and subsequently may lead to 
hyper or hypo uptake of radiopharmaceuticals in the 
given organ, ultimately causing misinterpretation of 
results or incorrect diagnosis [25-30]. For instance, 
vincristine (Mitomycin-C; a frequently used 
chemotherapy agent) was demonstrated to increase the 
uptake of 99mTc-DTPA in spleen [26]. Another study 
reported that vincristine caused a decrease in the 
uptake of the Tc-99m labelled methylenediphosphonic 
acid (99mTc-MDP; used for bone scintigraphy) in 
uterus, ovary, thymus, stomach, spleen, liver, kidney, 
heart and brain [27]. Moreover, with concurrent 
administration of the same drug (i.e., vincristine), the 
biodistribution of 99mTc-phytic acid (99mTc-PHY; 
frequently used in hepatic scintigraphy) has been 
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Table 1: Complete biodistribution data (Mean ±Standard Deviation) for all oranges. 

Organs Control 4 Hours 18 Hours 24 Hours 48 Hours 72 Hours 96 Hours 

Liver 0.828 ±0.201 0.311  ±0.075 0.323 ±0.110 0.417 ±0.110 0.407 ±0.310 8.980 ±2.744 1.190 ±0.560 

Spleen 0.840  ±0.209 0.075  ±0.024 0.107 ±0.025 0.060 ±0.020 0.087 ±0.047 8.697 ±1.512 1.091 ±0.412 

Stomach 1.010  ±0.603 0.318  ±0.115 0.173 ±0.032 0.230 ±0.114 0.227 ±0.133 8.287 ±1.762 0.991 ±0.390 

Intestines 3.178  ±1.585 4.581  ±1.067 3.040 ±3.551 1.523 ±0.857 1.640 ±0.871 7.657 ±0.643 1.890 ±0.132 

Lungs 0.770  ±0.206 0.074  ±0.017 0.320 ±0.313 0.110 ±0.036 0.327 ±0.312 8.623 ±1.828 0.502 ±0.312 

Femur 0.830  ±0.175 0.085  ±0.048 0.107 ±0.031 0.137 ±0.080 0.197 ±0.176 7.463 ±1.831 1.511 ±0.527 

Kidneys 2.218 ±0.590 0.665  ±0.132 0.440 ±0.036 0.807 ±0.055 1.170 ±0.554 7.163 ±0.974 10.162 ±0.793 

Urine 83.853  ±3.727 70.138  ±6.195 61.710 ±32.109 24.107 ±14.486 4.020 ±3.343 6.730 ±1.057 10.610 ±0.821 

Bladder 4.318  ±1.088 19.640 ±4.437 31.810 ±18.142 56.147 ±41.510 59.630 ±5.079 10.877 ±2.538 18.558 ±0.258 

Heart 0.865  ±0.134 0.078 ±0.010 0.117 ±0.015 0.197 ±0.144 0.103 ±0.035 7.940 ±2.088 1.049 ±0.882 

Carcass 3.018  ±0.662 5.018 ±1.280 1.787 ±0.581 13.953 ±6.143 29.027 ±7.402 9.600 ±1.706 4.216 ±1.021 

Blood 0.852  ±0.327 0.553 ±0.573 0.200 ±0.046 2.257 ±1.764 3.752 ±0.640 7.803 ±1.401 2.132 ±0.055 

Kidney+Bladder +Urine 89.378  ±1.941 90.443 ±5.892 93.964 ±3.961 81.060 ±7.277 64.820 ±5.536 24.770 ±2.105 39.330 ±2.770 

Liver+ Intestines 4.040  ±2.920 5.141 ±1.762 3.361 ±2.510 1.942 ±0.821 2.051 ±1.022 16.637 ±3.180 10.080 ±6.840 

 
 
documented to increase in lung, spleen, stomach, 
thyroid and bone, while decrease in thymus and 
pancreas [28]. Likewise, chloroquine, a precursor for 
the anti-malarial drug, has shown to significantly 
increase the uptake of sodium pertechnetate in the 
blood and liver [25]. Such results have been 
interpreted on the basis of metabolism, therapeutic 
action, toxicity and/or immunosuppressive actions of 
the particular administered drug, eventually affecting 
the biodistribution of the radiopharmaceutical. 
In our study, the % TRD in the urinary tract (Figure 2) 
is different in all experimental subgroups as compared 
to the control group. These results indicate that the 
renal clearance of 99mTc-DTPA may be changed when 
DOX was administered prior to the 
radiopharmaceutical. Particularly, when the time 
interval between the radiopharmaceutical and DOX 
was 48, 72 and 96 hours, the renal clearance of 99mTc-
DTPA was significantly less (p < 0.05) as compared to 
the control group. Furthermore, Figure 3 showed a 
reciprocal relationship of liver %TRD compared to 
that of the urinary tract. The increase of liver %TRD 
was maximum (p < 0.001) at an interval of 72 hrs (8.98 
±2.74); at this time point, maximum decline in urinary 
tract %TRD was observed. These findings indicate 
that the DRI between DOX and 99mTc-DTPA may alter 
the biodistribution of 99mTc-DTPA and may 
complicate the interpretation of scintigraphy imaging. 
The hypothesized DRI is supported by the fact that 
both DOX and DTPA are metal chelators [24]. 
Consequently, some quantity of 99mTc-DTPA may be 
chelated by DOX [31] and directed away from the 
kidney system, resulting in a %TRD decline for 
urinary tract as depicted in Figure 2. Similarly, 
increased activity in the liver may be explained on the 

basis of chelation of 99mTc-DTPA with DOX that 
draws it in the liver in greater concentrations than the 
control group. Subsequently, increased excretion of 
99mTc-DTPA in bile is supported by the statistically 
significant relative increase in %TRD observed in the 
72 hours interval subgroup (16.64 ±3.01) as shown in 
Figure 4. 
Decreased renal clearance and increased biliary 
clearance of 99mTc-DTPA was not seen at shorter time 
intervals (e.g. 4 hours) between administration of 
DOX and 99mTc-DTPA. Perhaps for shorter time gaps 
between DOX and 99mTc-DTPA, DOX extensively 
binds to plasma protein with limited distribution; the 
plasma bound DOX would not be capable to interact 
with 99mTc-DTPA [32-37]. Importantly, the 
chemotherapy drug appears capable for altering the 
physiological status of the given organ or the chemical 
identity of the radiopharmaceutical [38]. Moreover, a 
larger number of experimental animals in the 
subgroups may promote more sensitive measurements 
and thereby facilitate to observe the argued DRI.  
Both DOX and 99mTc-DTPA show similar PK in rats 
as compared to humans; therefore, it is expected that 
the observed trends of altered radiopharmaceuticals in 
Sprague-Dawley may also provide fairly accurate 
insights into the behavior of these DRI in humans. 
Nevertheless, the overall time for drug clearance is 
expected to be shorter in rats as compared to humans, 
presumably due to smaller body surface area, faster 
heart rate and thereby faster blood flow [39-41]. 
 

CONCLUSION 
The present work was designed to study the influence 
of DOX on the biodistribution of 99mTc-DTPA in rats; 



Influence of doxorubicin on the biodistribution of 99mTc-DTPA 
Razaq et al. 

 

 

Ir
an

 J
 N

uc
l M

ed
 2

01
7,

 V
ol

 2
5,

 N
o 

2 
(S

er
ia

l N
o 

49
) 

  
  
  
  

 h
tt

p:
//

ir
jn

m
.t

um
s.

ac
.ir

  
  

  
  
  
Ju

ly
, 

20
17

 

127 

 

significant alterations in the biodistribution of 99mTc-
DTPA were observed. Specifically, the mean activity 
in rat urinary system decreased significantly (p<0.001) 
while significant increase (p<0.001) in liver uptake 
was observed. The altered behavior was more obvious 
when the time interval between sequentially injected 
DOX and 99mTc-DTPA was 72 hours. These findings 
indicate that the interpretation of renal scintigraphy 
study using 99mTc-DTPA may be complicated in 
patients receiving DOX based chemotherapy and 
demands caution for proper assessment. Furthermore, 
there is a need to thoroughly explore Drug-
Radiopharmaceutical interactions by investigating the 
behavior of other chemotherapy drugs and 
radiopharmaceuticals that may be used concurrently or 
in close conjunction to one another in clinical practice. 
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