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Introduction: A deep learning pipeline consisting of two deep convolutional 
neural networks (DeepCNN) was developed, and its capability to differentiate 
uptake patterns of different radiopharmaceuticals and to further categorize PET 
images based on the body regions was explored. 
Methods: We trained two sets of DeepCNN to determine (i) the type of 
radiopharmaceutical ([18F]FDG and [68Ga]Ga-PSMA) used in imaging (i.e., a binary 
classification task), and (ii) body region including head and neck, thorax, 
abdomen, and pelvis (i.e., a 4-class classification task), using the 2D axial slices of 
PET images. The models were trained and tested for five different scan durations, 
thus studying different noise levels. 
Results: The accuracy of the binary classification models developed for different 
scan duration levels was 98.9%–99.6%, and for the 4-class classification models 
in the range of 98.3%–99.9 ([18F]FDG) and 97.8%–99.6% ([68Ga]Ga-PSMA). 
Conclusion: We were able to reliably detect the type of radiopharmaceutical 
used in PET imaging and the body region of the PET images at different scan 
duration levels. These deep learning (DL) models can be used together as a 
preliminary input pipeline for the use of models specific to a type of 
radiopharmaceutical or body region for different applications and for extracting 
appropriate data from unclassified images. 
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INTRODUCTION 

Medical imaging is an essential tool for diagnosing 
and determining the prognosis of different 
diseases, which provides valuable information 
about patients' health status by acquiring 
quantitative,  semi-quantitative, and qualitative 
data from the regions of interest. Nuclear 
medicine imaging utilizes nuclear interactions of 
the matter (i.e., injected radionuclide or 
radiopharmaceutical) as a medium for imaging 
and can thus provide molecular and metabolic 
information from the region scanned. Positron 
emission tomography (PET) is a subset of nuclear 
medicine imaging techniques commonly used to 
acquire metabolic data in a wide range of 
pathologies, including tumors, and offers 
numerous applications in oncology, neurology, 
and cardiology [1–4]. Fluorodeoxyglucose 
([18F]FDG) and gallium-68-prostate-specific 
membrane antigen ([68Ga]Ga-PSMA) are 
examples of radiopharmaceuticals used in 
positron emission tomography/computed 
tomography (PET/CT) imaging to acquire images 
of different body parts and enable the monitoring 
of disease progression and treatment planning 
[5,6].  
Artificial intelligence (AI) methods, including 
machine learning (ML) and deep learning (DL) [7], 
have found their role in medical imaging research 
with diverse applications such as classification, 
segmentation, super-resolution, and low-vision 
problems [4, 8–17]. 
Successful implementation of AI methods 
depends on the quality (i.e., balanced dataset, 
noise-free images, etc.) and quantity of the data. 
As for most medical imaging applications of AI, 
there has always been a lack of labeled data to be 
used in supervised learning tasks hindering the 
satisfactory development of AI models. 
Increased dependence on medical imaging 
techniques for disease diagnosis and treatment 
planning over the years have resulted in acquiring 
massive collections of patient data, including 
images acquired via different imaging modalities, 
such as magnetic resonance imaging (MRI), 
computed tomography (CT), nuclear medicine 
imaging, etc. The manual organization of these 
large datasets requires considerable time and 
effort, and this tedious work is often prone to 
erroneous and disorganized datasets when 
performed manually because of the declining 
human performance with an increase in 
workload. 
Categorizing PET images based on the 
radiopharmaceutical used and body region can  

 
efficiently organize the available image data for 
developing more robust and reliable AI models 
with the help of a more sophisticated dataset. 
Previously, DL models have been used to classify 
PET images based on several aspects. Wang et al. 
[18] investigated the strategies of adapting a 
previously developed automatic anatomy 
recognition (AAR) [19] system using fuzzy models 
to PET ([18F]FDG) and low-dose CT in three 
categories of thoracic, abdominal, and pelvic 
regions. By evaluating size estimation and 
localization errors, they achieved noticeable 
results. Qayyum et al. [20] used a DeepCNN to 
classify multi-modality images into 24 organ-
based classes and achieved an average accuracy 
of 99.77% and mean average precision of 0.69%. 
To the best of our knowledge, there has been no 
study classifying PET images based on the 
radiopharmaceutical type at different time scan 
levels with various peak signal-to-noise ratios 
(PSNR) and noise levels. 
In the current study, we employed DeepCNNs to 
provide an input data pipeline capable of 
discriminating [18F]FDG and [68Ga]Ga-PSMA PET 
axial images (binary classification) and then 
categorizing these images into four anatomical 
regions including head and neck, thorax, 
abdomen, and pelvis (4-class classification). To 
simulate different noise level present in axial 
images, we developed different models using 
images post-reconstructed with various scan 
durations (standard, one-half, one-fourth, one-
eighths, and one-sixteenth). Furthermore, we 
tested different combination of DL network 
hyperparameters to find the best combination 
appropriate for the specific application. 
The proposed models can determine the type of 
radiopharmaceutical used in imaging and 
categorize axial images based on the body region; 
thus, they can be used for automatic 
categorization and archiving of PET images 
available at different noise levels for two 
radiopharmaceuticals, alleviating the problem of 
the considerable amount of unused data. 
Automating the tedious but straightforward 
process of image labeling based on 
radiopharmaceuticals and the body regions. As 
for the different noise levels covered in this study, 
the developed models can be adopted to 
categorize images acquired from various PET 
imaging devices, thereby broadening the 
generalizability of the proposed models. 
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METHODS 

Dataset 
The dataset is consisted of PET axial images of 20 
patients (10 for each radiopharmaceutical), 
acquired with two radiopharmaceuticals 
([18F]FDG or [68Ga]Ga-PSMA) using a GE 
Discovery PET/CT scanner.   
For each radiopharmaceutical, the patients were 
scanned using the standard scan duration 
(denoted with 𝑆1) and retrospectively 
reconstructed using one-half (𝑆1

2⁄ ), one-fourth 

(𝑆1
4⁄ ), one-eighth (𝑆1

8⁄ ), and one-sixteenth 

(𝑆1
16⁄ ) of the standard scan duration to mitigate  

 
different noise levels. For 4-class classification, 
each dataset was further split into four balanced 
categories using corresponding computed 
tomography (CT) images of PET slices: head and 
neck, thorax, abdomen, and pelvis. For binary 
classification, the corresponding sub-series of 
each radiopharmaceutical (e.g., 𝑆1) were 
compiled to prepare a balanced dataset 
comprising two classes: [18F]FDG and [68Ga]Ga-
PSMA. More details on patient data and datasets 
are presented in Tables 1 and 2. Peak signal-to-
noise ratio (PSNR) was calculated by considering 
sub-series 𝑆1 as Ground Truth.

Table 1. The results of algorithm on the cardiac of XCAT phantoms and their reconstructed SPECT images  

BMI: Body Mass Index, Min: Minimum, SD: Standard deviation, Max: Maximum  

Architecture of the input pipeline and deep 
learning models  
This input pipeline consists of two separate sets 
of DeepCNNs developed for binary classification 
specifying the type of radiopharmaceutical used 
in scanning and 4-class classification of images 
acquired with each radiopharmaceutical into 
categories of head and neck (abbreviated as 
H_N), thorax, abdomen, and pelvis.  
Based on Figure 1, the architectures of the models 
developed for binary and 4-class classification 
tasks differ. Python programming language 
(Version 3.7.10) was used to harness Keras API 
(Version 2.3.1) on the TensorFlow Backend 
(Version 2.1.0). Image files were originally DICOM 
files, but for the training and testing purposes and 
privacy concerns, only the pixel data of the files 
were extracted and saved as JPEG images and 
then used in training and testing. The models 
received two-dimensional axial images with three 
channels (192, 192, 3) as the input without any 
specific pre-processing. The models used in this 
study were composed of four consecutive blocks, 
each block containing two components: 1) a 2-D 
convolutional layer (with rectified linear unit 
(ReLU) activation function) followed by 2) a 
maximum pooling layer with a stride of 2 and 
pooling size of (2, 2). These four consecutive 
layers were followed by two fully-connected 
(dense) layers. The activation function of the first 
dense layer was ReLU, while for outputting a 
probability, the activation function of the second 

dense layer was the Softmax function for 4-class 
classification and the sigmoid function for binary 
classification. Another difference between the 
models developed for binary and 4-class 
classification was the filter values of each 
successive convolutional layer. Unlike 4-class 
classification models, an L2 layer weight 
regularizer was used for each convolutional layer 
of binary classification network. For binary 
classification, the convolutional kernel size was 
constant (3, 3), whereas, for the 4-class 
classification task, two kernel sizes (3, 3) and (5, 
5) were explored.  
The models were implemented using an NVIDIA 
GeForce GTX 950M Graphics Processing Unit 
(GPU) with 4 GB of dedicated memory and an 
Intel(R) Core (TM) i7-4720HQ CPU with a base 
frequency of 2.60GHz. 

Training and testing strategies for deep learning 
methods 

Binary classification 
Models with the same architecture were 
developed for each sub-series (i.e., 𝑆1 –𝑆1

16⁄ ) 

prepared for this task. A 5-fold nested cross-
validation strategy [21] was followed for training 
and testing, i.e., in each fold 70% of the data was 
dedicated to training, 10% to validation, and the 
remaining 20% to testing. Details about the 
multiple hyperparameter value settings of the 
implemented models and other training and 
testing properties are given in Table 3. 

Radiopharmaceutical 
Number of 

patients 
Sex 

Age  BMI 

Min Mean ± SD Max  Min Mean ± SD Max 

[18F]F-FDG 
5 M 18 51 ± 21 75  17.3 25.0 ± 5.1 30.3 

5 F 40 55 ± 12 72  15.0 26.1 ± 7.3 34.1 

[68Ga]Ga-PSMA 10 M 59 73 ± 7 86  22.9 25.7 ± 2.7 29.9 
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Figure 1. Model architectures used for binary and 4-class classification tasks. Four blocks of convolution and maximum pooling 
layers are followed by a flattening layer. Finally, two fully-connected (dense) layers are added to the end of the models 
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Table 2. Datasets for the different classification tasks. For each dataset, scan duration and peak signal-to-noise ratio is present 

Classification Task Radiopharmaceutical Sub-series 

Number of 
axial slices 

for each 
category 

Total Scan 
Duration 

(Second) 

(Mean ± SD) 

PSNR 

(Mean ± STD) 

Head and Neck Thorax Abdomen Pelvis 

4-class 

[18F]F-FDG 

𝑆1 550 674.5 ± 101.5 GT GT GT GT 

𝑆1
2⁄  550 331.9 ± 36.7 47.30±5.88 47.10±6.14 44.60±6.51 45.51±6.06 

𝑆1
4⁄  550 166.9 ± 17.9 42.74±6.43 42.41±6.81 39.98±7.10 40.99±6.52 

𝑆1
8⁄  550 85.1 ± 8.6 39.53±6.22 39.28±6.82 36.87±6.97 37.86±6.48 

𝑆1
16⁄  550 43.3 ± 4.4 35.70±6.90 35.68±35.68 33.35±7.45 34.60±6.70 

[68Ga]Ga-PSMA 

𝑆1 520 600 GT GT GT GT 

𝑆1
2⁄  520 300 53.48 ± 4.09 51.50 ± 1.98 43.30±1.56 50.83±2.24 

𝑆1
4⁄  520 150 50.70 ± 4.18 47.41±3.60 40.50±2.81 46.07±3.59 

𝑆1
8⁄  520 75 47.42 ± 4.40 44.12±3.64 36.82±2.86 42.88±3.63 

𝑆1
16⁄  520 40 44.87 ± 4.34 41.42±3.52 34.10±2.78 40.37±35.70 

 [18F]F-FDG [68Ga]Ga-PSMA 

Binary [18F]F-FDG /[68Ga]Ga-PSMA 

𝑆1 2600 637.25±79.62 GT GT 

𝑆1
2⁄  2600 315.95±30.12 46.15±6.21 51.60±5.30 

𝑆1
4⁄  2600 158.45±15.05 41.54±6.76 46.39±5.11 

𝑆1
8⁄  2600 80.05±7.84 38.41±6.65 43.04±5.29 

𝑆1
16⁄  2600 41.65±3.45 34.83±7.09 40.43±5.28 

PSNR: Peak signal-to-noise ratio; GT: Ground truth 
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4-Class classification 

For this 4-class classification task, we followed a different path. For each sub-series 
of radiopharmaceuticals, a model with the same basic architecture but different 
hyperparameters (batch size, learning rate, and kernel size) was repeatedly trained 

for three times to find the combination offering better results which resulted in 
360 trained models (when repeated for three times). A 5-fold nested cross-
validation strategy was used (70% of the data for training, 10% for validation, and 
the remaining 20% for testing) (Table 3 shows the details including training times).

Table 3. Model architectures and implementation details 

Classification 
Task 

Radiopharmaceutical 
Sub-

series 
Optimizer 

Loss 
Function 

Learning Rate 
Batch 
Size 

Kernel 
Size 

Epochs Regularizer 
Average Training Time 

(s) (mean ± SD) 
Average Testing Time 

(s) (mean ± SD) 

Binary [18F]F-FDG /[68Ga]Ga-PSMA 

S1 

ADAM 

Binary 
Cross-

Entropy 
0.0001 30 (3,3) 70 L2 

491.08±1.35 1.21±0.06 

S1/2 502.92±15.13 1.34±0.22 

S1/4 509.53±5.31 1.56±0.47 

S1/8 493.71±3.33 1.31±0.11 

S1/16 496.73±3.08 1.26±0.06 

4-class 

[18F]F-FDG 

S1 

ADAM 
Categorical 

Cross-
entropy 

0.001/0.0001 /0.00001 20/30 (3,3)/(5,5) 100 - 

454.56±60.63 0.59±0.07 

S1/2 456.64±64.70 0.61±0.09 

S1/4 454.18±59.25 0.60±0.07 

S1/8 452.56±57.66 0.64±0.28 

S1/16 460.45±63.96 0.66±0.23 

[68Ga]Ga-PSMA 

S1 

ADAM 
Categorical 

Cross-
entropy 

0.001/0.0001 /0.00001 20/30 (3,3)/(5,5) 100 - 

423.18±56.33 0.56±0.07 

S1/2 424.72±56.40 0.58±0.09 

S1/4 430.11±57.17 0.59±0.09 

S1/8 432.57±59.96 0.63±0.16 

S1/16 426.88±57.12 0.59±0.08 
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Classification evaluation metrics 

The metrics used for evaluating the performance of 
DL the classification models measure various 
aspects of their performance. Thus, we evaluated 
ten metrics (accuracy, precision, sensitivity, 
specificity, negative predictive value, false positive 
rate, false negative rate, F1-score, Matthews 
correlation coefficient, and area under the receiver 
operating characteristic curve (AUC)) for each of 
the binary/4-class classification model; however, 
for the sake of brevity, we will only report average 
accuracy, recall (sensitivity), F1-score, and the 
(AUC) metrics for all folds, and plot the confusion 
matrix and ROC curves of the folds with the best 
results in each sub-series. 
Accuracy measures how well and precisely the 
model predict the class of all the samples present in 
the dataset, representing the proportion of correct 
predictions [22, 23] (Equation 1).  

Accuracy =  
TP+TN

TP+TN+FP+FN
                       (1) 

In equation 1, TP, TN, FP, and FN represent true 
positive, true negative, false positive and false 
negative instances (the acceptance threshold was 
set to 0.5). 
The ratio of the true positive predictions to the total 
positive predictions is reported using the recall or 
sensitivity metric [23] (Equation 2). 

Sensitivity (recall) =  
TP

TP+FN
               (2) 

The harmonic mean of the precision and recall 
metrics results in another classification 
performance metric called the F1-score [23] 
(Equation 3). ROC curve is a tool for measuring the 
accuracy of methods, and the AUC is a value 
summarizing it. An AUC value of 0.5 shows that the 
method has no diagnosis capability, while values 
close to 1 are preferred [24]. 

F1 − score =  
 2 × (recall × precision)

(recall+precision)
                     (3)  

RESULTS 

Binary classification results 
The purpose of binary classification is to determine 
the radiopharmaceutical used in PET imaging 
([18F]FDG or [68Ga]Ga-PSMA) based on PET images 
in each noise level (e.g., 𝑆1). We followed a 5-fold 
nested cross-validation approach for training, 
validation, and testing. Table 4 summarizes the 
macro average results of all folds of the binary 
classification task for each sub-series. Figure 2 
presents the confusion matrices of the folds with 
the best results in the binary classification task in 
each sub-series. ROC curves are present in Figure 3. 
The GradCam [12, 25] is a helpful tool to improve 
the transparency of the decision made by CNNs by 
showing the regions of the images triggering the 
CNN to decide. In Figure 4, GradCam illustrations of 
the binary classification models for different scan 
durations are plotted. 

Table 4. Binary classification results* 

Sub-series Accuracy Sensitivity F1-score AUC Training time (s) Prediction time (s) 

𝑺𝟏 0.996±0.003 0.996±0.002 0.996±0.003 0.996±0.003 491.08±01.35 1.21±0.06 

𝑺𝟏
𝟐⁄  0.994±0.002 0.995±0.002 0.994±0.002 0.994±0.002 502.92±15.13 1.34±0.22 

𝑺𝟏
𝟒⁄  0.994±0.003 0.994±0.003 0.994±0.003 0.994±0.004 509.53±05.31 1.56±0.47 

𝑺𝟏
𝟖⁄  0.990±0.002 0.992±0.002 0.992±0.002 0.992±0.002 493.71±03.33 1.31±0.11 

𝑺𝟏
𝟏𝟔⁄  0.989±0.004 0.989±0.004 0.989±0.004 0.989±0.004 496.73±03.08 1.26±0.06 

AUC: Area under the curve 
 *: In order to differentiate values, the accuracy, sensitivity, f1-score, and AUC results presented in this table are reported with more fraction 
digits than the rest of the results presented in this study 
 

4-Class classification 
For each sub-series of the two radiopharmaceuticals, 
12 DeepCNN models were developed using various 
combinations of hyperparameters, and each model 
was trained and evaluated three times using a one-
held-out validation approach. In Table 5, 
hyperparameters settings and classification metrics 
are reported only for the model with the best 
performance based on confusion matrices. In Figure 5, 
Confusion Matrices are displayed for each 
radiopharmaceutical. Figure 6 presents the GradCam 
illustration of the 4-class classification models in 
multiple sub-series and various regions of the body. 

ROC curves are also present in Figure 7. Some 
combinations of the hyperparameters led to the 
model collapsing (classifying all classes as one) are 
summarized in Table 6.  

DISCUSSION 

We developed an input pipeline consisting of two 
sets of Deep CNN models for two purposes: 1) 
determining the radiopharmaceutical used in PET 
imaging based on PET images (binary classification), 
2) categorizing PET images into four anatomical 
categories, namely head and neck, thorax, 
abdomen, and pelvis (4-class classification). 
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Figure 2. Confusion matrices of folds with the best results in each sub-series of binary classification task. S1, S1/2, S1/4, S1/8 and S1/16 
denote different scan duration fractions at which binary classification task was explored 

 

 

 

Figure 3. Receiver Operating Characteristic Curves (ROC) of folds with the best results in each sub-series of binary classification task 
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Figure 4. GradCam illustration for binary classification models in different sub-series and radiopharmaceuticals 
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Table 5. Results for 4-class classification, and the corresponding hyperparameters settings. Results are reported as average over all classes 

Radiopharmaceutical 
Sub-

series 
Kernel 

Size 

Learning 

Rate 

Batch 
Size 

Accuracy Sensitivity 
F1-

score 
AUC 

Training 
Time 

(s) 

Prediction 

Time 

(s) 

[18F]F-FDG 

𝑆1 (3,3) 0.001 20 0.999 0.998 0.999 1.0 395.84 0.80 

𝑆1
2⁄  (5,5) 0.0001 20 0.996 0.991 0.998 1.0 524.07 0.61 

𝑆1
4⁄  (3,3) 0.0001 20 0.998 0.996 0.997 1.0 399.49 0.55 

𝑆1
8⁄  (5,5) 0.001 30 0.993 0.986 0.995 1.0 494.99 0.61 

𝑆1
16⁄  (3,3) 0.0001 20 0.983 0.966 0.993 1.0 399.02 0.55 

[68Ga]Ga-PSMA 

𝑆1 (3,3) 0.0001 20 0.992 0.998 0.998 1.0 371.22 0.50 

𝑆1
2⁄  (5,5) 0.0001 20 0.996 0.991 0.991 1.0 496.90 0.58 

𝑆1
4⁄  (3,3) 0.0001 20 0.993 0.996 0.996 1.0 378.72 0.52 

𝑆1
8⁄  (5,5) 0.0001 30 0.988 0.986 0.986 0.996 480.10 0.61 

𝑆1
16⁄  (5,5) 0.0001 30 0.978 0.966 0.966 0.995 469.27 0.60 

Table 6. Hyperparameter setting of collapsed models 

Radiopharmaceutical Sub-series Kernel Size Learning Rate Batch Size 

[68Ga]Ga-PSMA 

𝑆1 (5,5) 0.001 30 

𝑆1
2⁄  

(3,3) 0.001 30 

(5,5) 0.001 30 

𝑆1
4⁄  

(3,3) 0.001 20 

(5,5) 0.001 30 

𝑆1
8⁄  (5,5) 0.001 30 

𝑆1
16⁄  

(3,3) 0.001 30 

(5,5) 0.001 30 

[18F]F-FDG 

𝑆1 
(5,5) 0.001 30 

(5,5) 0.001 20 

𝑆1
2⁄  

(5,5) 0.001 20 

(5,5) 0.001 30 

(5,5) 0.001 20 

𝑆1
4⁄  (5,5) 0.001 30 

𝑆1
8⁄  

(5,5) 0.001 20 

(5,5) 0.001 30 

𝑆1
16⁄  (5,5) 0.001 30 

 

Although sub-series 𝑆1
16⁄  was reconstructed using 

1/16th of the standard scan duration of sub-series 
𝑆1 in the binary classification task, accuracy 
decreased from 99.55 to 98.94 (5-fold nested cross-
validated and averaged), representing model 
robustness in dealing with noise level since the 
PSNR of the acquired images can differ based on 
scan duration, different patient physiology, etc. 
Similar to accuracy, recall, and F1-score did not 
change significantly, from 𝑆1 to 𝑆1

16⁄ , despite the 

differences in PSNR and scan duration (Table 4).  
In Figure 4, the GradCam illustration of the models 
used for binary classification is depicted in each 
sub-series and for both radiopharmaceuticals. 
There are two images for each radiopharmaceutical 
in this figure, the original image (on the left) and the 

same image but with GradCam heat maps (on the 
right). The CNN model decides to classify images 
based on regions with a noticeable uptake specific 
to that region. For instance, in sub-series 𝑆1, the 
model decides to classify images based on 
radiopharmaceutical uptake in temporal regions of 
the brain; in the case of [68Ga]Ga-PSMA in sub-
series 𝑆1

2⁄ , the model decides based on the uptake 

in the hepatic region.  
Categorizing images into different body regions can 
help develop more sophisticated tools such as 
computer-aided diagnosis (CAD) systems and 
different DL models for super-resolution and 
segmentation. 
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Figure 5. (Above): Confusion Matrices of models with the best results in [18F]FDG radiopharmaceutical. S1, S1/2, S1/4, S1/8 and S1/16 denote 
different scan duration fractions at which [18F]FDG 4-class classification task was explored  
(Below): Confusion Matrices of models with the best results in [68Ga]Ga-PSMA radiopharmaceutical. S1, S1/2, S1/4, S1/8 and S1/16 denote 

different scan duration fractions at which [68Ga]Ga-PSMA 4-class classification task was explored. As expected, S1/16 in both [18F]FDG and 

[68Ga]Ga-PSMA had the higher incidence rate of misclassification. It is also notable that sum of all misclassification cases for all five levels 

was higher in [68Ga]Ga-PSMA than [18F]FDG which indicates the fact that [18F]FDG is a general-purpose radiopharmaceutical compared 

with [68Ga]Ga-PSMA 
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Figure 6. (Above): GradCam illustrations for 4-class Classification of [18F]FDG Radiopharmaceutical.  The CNN successfully classifies images 
based on the structures specific to a particular region (e.g., Gray and White matter of the brain or mediastinum of the thoracic region). It 
is noticeable that with decreasing PSNR (from S1 to S1/16) the pinpointing accuracy of structures decreases in some regions (abdomen and 
pelvis) 
(Below): GradCam illustrations for 4-class Classification of [68Ga]Ga-PSMA Radiopharmaceutical. Just like [18F]FDG, the CNN again 

successfully classifies images based on the structures specific to that special region (e.g., liver and spleen in abdominal region and bladder 

in Pelvic area). Since [68Ga]Ga-PSMA is a specific radiopharmaceutical used in prostate cancer imaging; thus, its uptake in other body 

regions is not as prominent as [18F]FDG, a multi-purpose radiopharmaceutical 

So 4-class classification results are reported in Table 
5. In terms of model hyperparameters, it is evident 
that a learning rate of 0.0001 and batch size of 20 
mostly led to better results. Although the results 
reported in this table may not be the best 
quantitative results, they offer a good insight into 
the outcomes. Figure 8 depicts the scatter plots of 
4-class classification models and classification 
metrics, indicating that most models with different 
combinations of hyperparameter values had a 
similar performance. 
Table 5 reports the classification metrics of 4-class 
classification for each sub-series of 
radiopharmaceuticals. Accuracy decreased from 

99.89% (𝑆1) to 98.30% (𝑆1
16⁄ ) for the [18F]FDG, and 

from 99.16% (𝑆1) to 97.84% (𝑆1
16⁄ ) for the [68Ga]Ga-

PSMA. These values are the average of all the 
classes (head and neck, thorax, etc.). Note that 
these values were higher for classes without any 
overlapping regions; nevertheless, since there is 
not a definitive separation between body regions, 
and there is some tissue overlap (e.g., the liver can 
be seen in the same axial slice as the lungs), it is 
expectable for the models to mistake some thoracic 
slices as abdominal and can be a reason the overall 
accuracy of classification can decrease to some 
extent. 
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Figure 7. (Above): Receiver Operating Characteristic curves (ROC) of models with the best results in [18F]FDG radiopharmaceutical. 

(Below): Receiver Operating Characteristic Curves (ROC) of models with the best results in [68Ga]Ga-PSMA radiopharmaceutical 
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Some 4-class classification models collapsed 
meaning that all classes were classified as one 
(Table 6). The shared trait of all the collapsed 
models was a learning rate of 0.001, which could 
explain their inability to learn. However, the results 
are not conclusive for other hyperparameters. 
Moreover, 70% of the crashed models had a batch 
size of 30, and 82% of them had a kernel size of (5, 
5) which was 100% in the case of the models used 
for classifying [18F]FDG images. Larger kernel sizes 
mean that the convolutional kernel's scope is 
broader, which could explain why these models 
failed to identify delicate local patterns. 
This study has some limitations. Firstly, this study is 
a part of the series of studies to employ DL for PET 
image processing, and the aim may be confusing at 
first sight. Nevertheless, the capability to identify 
the radiopharmaceutical and body sections on 
images is important because the findings highlight 
the possibility of DL employment for this purpose 
and enable the researchers to use DL preprocessing 
methods for further image manipulations. Second, 
the [68Ga]Ga-PSMA data came from male patients 
only, while the [18F]FDG data included both male (5) 
and female (5) patients. This difference is a source 
of imbalance in the data because of the different 
physiologies of the male and female bodies. For an 
ideal comparison of the performance of 
classification models, images should be acquired 
from the same patients imaged with both [68Ga]Ga-
PSMA and [18F]FDG, but this is not achievable. 
Although the randomness of the CNN weights and 
initialization was revoked by setting the seed of 
TensorFlow and other packages used in developing 
the models, it is still evident that the results suffer 
from randomness, and different images trained and 
tested on during train and test split procedure 
(although models of 4-class classification with the 
same hyperparameters were trained three times, 
some of them collapsed while the others did not). 
There are multiple possibilities to further expand 
this study. These models were two-dimensional 
DeepCNNs, and accordingly, their input was two-
dimensional (2D) axial images. A three-dimensional 
(3D) DeepCNN and multi-slice input strategy could 
be considered, and additional gains from 3D 
DeepCNNs be explored. Transfer learning and 
ensemble methods could prove to be much more 
efficient by increasing the number of images 
acquired with radiopharmaceuticals other than 
[18F]FDG and [68Ga]Ga-PSMA, making the 

classification categories much more sophisticated 
classifying the images present in a body region 
group based on different organs. PET images do not 
provide enough anatomical information which is 
one of the reasons to use accompanying CT images 
to provide anatomical context about the scan 
region of interest. At the same time, even without 
such anatomical context, our deep identification 
task performances were excellent. Finally, the 4-
class classification task could be further improved 
to classify all axial and all anatomical regions. 

 

Figure 8. Scatter plots of 4-class classification models (x-axis) 

and classification metrics 
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CONCLUSIONS 

We developed an input data pipeline consisting of 
two sets of DeepCNNs for categorizing PET images 
based on radiopharmaceuticals used in imaging 
and categorizing images into specific body region 
groups (head and neck, thorax, abdomen, and 
pelvis). The models included in the pipeline 
provided promising results at different noise 
levels denoted by sub-series 𝑆1 to 𝑆1

16⁄  to achieve 

decreasing scan durations during reconstruction. 
Covering multiple noise levels ensured that 
trained models were generalized enough to be 
applicable on the real-world PET images. The 
smaller number of parameters decreases the 
possibility of the model memorizing data instead 
of learning patterns required for seamless image 
classification, thereby promoting model 
generalization. DeepCNNs presented in the 
pipeline were successfully capable of classifying 
PET images based on radiopharmaceutical used 
and further categorization according to 
anatomical region without the help of additional 
anatomical data from corresponding CT images. 
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