Tissue uptakes of ⁶⁷Ga-bleomycin and carrier free ⁶⁷Ga in fibrosarcoma-bearing mice

F. Tabeie¹, B. Bolouri², A. R. Jalilian³, N. Mosaffa⁴, H. Rajabi⁵ and I. Neshandar- Asli⁶

¹ Department of Medical Physics, Tarbiat Modarres University, Tehran, Iran

² Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran

³ Cyclotron & Nuclear Medicine Department, Nuclear Research Center for Agriculture & Medicine (NRCAM), Atomic

Energy Organization of Iran (AEOI), Tehran, Iran

⁴ Department of Immumology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran

⁵ Department of Medical Physics, Tabiat Modarres University, Tehran, Iran

⁶ Department of Nuclear Medicine, Shaheed Beheshti University of Medical Science, Tehran, Iran

ABSTRACT

⁶⁷Gallium-bleomycin complex (⁶⁷Ga-BLM) was prepared using Thakour method. Radio-thinlayer-chromatography of prepared complex showed A_2 and B_2 radiopeaks with R_f at 0.7 and 0.4 respectively with a purity of above % 95. Tissue uptake of 67 Ga-BLM and 67 GaCl₃ in twelve tissues including tumor, blood, liver, lung, spleen, muscle, skin, heart, kidney, colon, colon content bladder and the total body were counted by well counter at 1, 2, 4, 24 and 48 hours post injection, of radiopharmaceuticals. Uptakes of tissues are expressed as percent injected dose per gram of tissue. The clearance rate of 67Ga-BLM was 1.75-1.95 times faster than 67GaCl₃ at all time intervals. Bladder uptakes of 67 Ga-BLM were highest among twelve tissues at 1,2 and 4 hours after injection, then falling rapidly after 24 and 48 hours. Blood uptake of 67 Ga-BLM was lower than ⁶⁷GaCl₃ in all time intervals. Colon content uptake of ⁶⁷Ga-BLM was highest among twelve tissues at 2 and 4 hours post injection. Tumor to tissue activity ratios were also calculated , showing an increase of tumor to blood and muscle ratios. Tumor to blood ratio increased from 0.3 at 1 hour to 5.3 at 48 hours. Activity ratio of muscle increased from 0.5 at 1 hour to 5.5 at 48 hours. Whole body counting of animals showed that effective half lives of 67 Ga-BLM and 67 GaCl₃ were about 1 and 15 hours respectively, which renders faster excretion of ⁶⁷Ga-BLM complex. Biodistribution data clearly indicates that prepared complex in comparison with carrier free ⁶⁷Ga (⁶⁷GaCl₃) has two main advantages: 1) high tumor to soft tissue uptake ratio that make it suitable for tumor imaging, 2) faster excretion specially at first three hours post injection. In addition complex is stable in vitro and in vivo.

Key words: ⁶⁷Gallium chloride, ⁶⁷Gallium-bleomycin, biodistribution, tumor imaging.

Introduction

There has been a growing interest to find new agents for tumor imaging in diagnostic nuclear medicine. So far a few radionuclides i.e. ⁶⁷Ga,

¹¹¹In, ¹³¹I and ¹⁶⁹Yb have been in clinical use with limited application, specially in the case of gasterointestinal cancer and carcinoma of head and neck (1). Since 1962 bleomycin has been used for chemotherapy because of it's significant antitumor activity against several human malignancies i.e. squamous cell carcinoma, malignant lymphomas, germ cell tumors of testes (2,3), caposi's sarcoma, malignant melanoma (4,5) and head and neck cancers (6). During the past three decades various physical conditions have been used to gain diagnostic and therapeutic applications of bleomycin i.e. hyperthermia (7,8), use of intense electric pulses as electro-chemotherapy (9-11) and labeling of bleomycin with radionuclides (12-22). Several radionuclides such as ¹¹¹In, ¹³¹I, ^{99m}Tc and ⁵⁷Co have been used to radiolabel bleomycin. The biodistribution of bleomycin complexes in different tumoral models have also been studied (12-22). ⁵⁷Co-BLM complex was recommended for tumor imaging because it did not bind to transferrin and was stable in-vivo (23-24), but because of it's long physical half life (270 days) it is not favoured for tumor imaging. Preparation , stability and biodistribution of ¹¹¹In-BLM has also been studied in different tumoral models i.e. glioma. KHJJ tumor. breast mammary adenocarcinoma ,lung cancer and hepatoma in mice and rat (12-21). However different clinical studies have shown that "IIIn-BLM is not superior to 67Ga-citrate regarding tumor to soft tissue uptake (19). The present study was directed toward assessing a comparative measure of biodistribution of 67Ga-BLM complex and carrier free ⁶⁷Ga in fibrosarcoma bearing mice. In the earlier report, the preparation, stability and biodistribution of the so called radiopharmaceuticals in normal mice was reported (25).

Materials and Methods Labelling

Radiopharmaceutical preparation was carried out by labelling the chemotheraputic drug, bleomycin with ⁶⁷Ga, a radioisotope commonly used in diagnostic nuclear medicine procedures for tumor localization and imaging. ⁶⁷Ga has physical half life of 78 hours and emits low energy Auger electrons and photons of 93,184 and 296 KeV.

The 67 Ga-BLM complex was prepared in optimized conditions as described previously (25). The cyclotron produced 67 GaCl₃ was used for labeling. A total of 0.2-2 ml of 67 Ga-Cl₃ at activity of 0.25-2.5 mCi adjusted to pH 2 by1 M HCl, was evaporated by slight heating and N₂ gas flow. The 67 Ga residue was mixed with 0.25 - 2.5 mg of bleomycin in 0.1 ml of normal saline. The mixture reaction was performed under tight caping of vial and 100 °C for 30 minutes.

Quality control of prepared ⁶⁷Ga-BLM complex was performed by thin layer chromatography (TLC) on silica gel papers (25,26). One droplet of the complex was placed on a TLC paper (F 1500 / LS, Schleicher & Schoell (18) and the paper was developed in a solution of equal volumes of %10 ammonium acetate and methanol for about 30 minutes. Location of the spots of ⁶⁷Ga-BLM isomers (A₂ and B₂) at developed silica gel paper were determined by 250 nm UV light for calculation of R_f values. The labeling efficiency was determined by counting 12 cm length of the paper in 10 mm steps by high pure germanium detector system (Cambera TM, GC1020- 7500 SL). The final solution was then passed through 0.22μ filter and pyrogen test was performed by a commercial LAL kit.

Stability

A sample of 0.5 mCi prepared 67 Ga-BLM complex was kept at room temperature for 24 hours while cheked by radio – thin – layer - chromatography (RTLC) at various time intervals (2, 4, 8, 12 and 24 hours). A 50 µL

sample was taken from shaking mixture and the ratio of free ⁶⁷Ga to ⁶⁷Ga-BLM complex was checked by RTLC.

A mixture of 5 parts human serum and one part produced ⁶⁷Ga-BLM complex (0.2 mCi) was shaked in a 37 °C incubator under nitrogen atmosphere. A 50 μ L sample was taken from the shaking mixture every 30 minutes and the ratio of the free ⁶⁷Ga to ⁶⁷Ga-BLM was also determined by RTLC method.

Tissue Distribution

Tumor induction was carried out by transplanting 2×10⁵ WEH1-164 С Balb fibrosarcoma (prepared from cell bank of Pastour Institute of Iran coded NCBI C200) in the subcutaneous tissue of the left lower quadrant of the abdomen of female Balb C mice weighing 15-20 gr. Animals were kept in isolated animal house and after about four weeks, the diameter of superficial solid tumors reached to about 1 cm.

Total of 40 tumor induced mice were selected for tissue distribution studies. Twenty mice in five equal population groups received approximately 40 µCi of ⁶⁷Ga-BLM complex $(\leq 3 \mu g \text{ bleomycin})$ via the dorsal tail vein. The mice were sacrificed at 1,2,4,24 and 48 hours post injection and samples of 12 selected tissues including tumor, blood, liver, lung, spleen, muscle, skin, heart, kidney, colon, colon content and bladder were excised, weighted wet and counted in a NaI (Tl) well counter (Capintec, CRC-15R). The average of percent injected dose per gram of tissue for 4 mice and the standard deviation have been reported. Other 20 tumoral mice received 40 µCi of ⁶⁷Ga-Cl₃ and the above procedure was repeated. Tissue distribution of ⁶⁷Ga-BLM and ⁶⁷Ga-Cl₃ radiopharmaceuticals were repeated for 40 normal Balb C mice in comparison with tumoral animals.

One group of four tumoral mice received 40

 μ Ci of ⁶⁷Ga-BLM and another identical group received same amount of ⁶⁷Ga-Cl₃ Animals then underwent whole body activity counting in cone shaped plexyglass restrainer using a well counter at 1, 2, 4, 24, 48 and 72 hours post injection.

Results Labelling and Stability

Radio thin layer chromatography of 67 Ga-BLM showed two distinct radio peaks of A₂ and B₂ with R_f of 0.7 and 0.4 respectively. Radiochomatogram scans of TLC plates showed radiochemical purity of higher than 95% (Fig 1).

The stability of complex in-vitro was checked by RTLC method. The bounded to free gallium ratio remained constant up to 24 hours after labeling. The stability of complex unchaged also in presence of serum proteins of mice and human didn't change. Radiochemical purity also remained constant (95%) even at tempretures up to 95°C. The pyrogen test with LAL showed no detectable contamination.

Tissue Distribution

The distribution and retention of 67 Ga-BLM and 67 Ga-Cl₃ among 12 tissues of fibrosarcomabearing mice 1, 2, 4, 24 and 48 hours after injection of radiopharmaceuticals are shown in table 1. The uptake amount and tissue concentration of pharmaceuticals are given as mean percent injected dose per gram of tissue. In addition, the standard deviations (n=4) are also given as an indication of the spread at data. The concentrations of 67 Ga-BLM and 67 GaCl₃ in 6 tissues at five selected time intervals after injection are compared in figures 2 and 3.

Tissue activity counting by well counter (table 1 and figures 2 and 3) showed that bladder uptake (% dose /gr tissue) of ⁶⁷Ga-BLM at 1, 2 and 4 hours after injection were about 3-10 times higher than other 11 tissues. Bladder uptake of ⁶⁷GaCl₃ were about 1.82-3.62 times lower than ⁶⁷Ga-BLM at first three times after injection and decreased by time. Blood uptakes showed monophasic decreasing patterns for both radioparmaceuticals, but the blood uptakes of ⁶⁷GaCl₃ are about 1.07-2.64 times higher than ⁶⁷Ga-BLM among five time intervals after injection.

Liver and lung uptakes from two radio-

pharmaceuticals showed biphasic patterns with two distinct increasing and decreasing phases. Liver uptake of 67 Ga-BLM increases from 2.97 \pm 0.11 at 1hour after injection and reaches to a maximum of 3.56 \pm 0.45 after 4 hours and then falls to 2.61 \pm 0.97 after 48 hours. Liver uptake of 67 GaCl₃ also had two increasing and decreasing phases. Liver uptake of 67 GaCl₃ also had two increasing and decreasing phases, but it's maximum was at 24 hours after after injection and at this time the uptake of 67 GaCl₃ was significantlly higher than 67 Ga-BLM. Lung uptake of two radiopharmaceuticals reached to maximum after 2 hours post injection

Muscle uptake of two radiopharmaceuticals showed monophasic decreasing patterns, but clearance rate of ⁶⁷Ga-BLM was about two times faster than ⁶⁷GaCl₃ Uptake and concentration of colon content had second rank among tissues at first three times after injection, which shows gastrointestinal secretion of ⁶⁷Ga-BLM.

Time (hrs)		1		2		2			4		24		4		18
Organ		Mean	SD		Mean	SD		Mean	SD		Mean	SD		Mean	SD
Tumor	Ga-BLM	 1.21	0.54		2.86	0.93		3.56	0.98		3.79	1.92		4.63	1.71
	Ga-CB	1.12	0.69	_	2.32	0.78		4.16	1.31		7.21	1.86		5.91	1.36
Blood	Ga-BLM	 3.91	0.71		3.85	0.83		2.43	0.41		0.97	0.21		0.87	0.13
	Ga-CB	6.12	1.19		4.14	0.83		3.04	0.92		2.61	0.52		1.88	0.12
Liver	Ga-BLM	2.98	0.11		3.11	0.54		3.56	0.45		2.81	0.67		2.61	0.97
	Ga-Cl3	2.87	0.52		3.18	0.76		3.51	0.56		4.63	0.66		3.21	0.72
Lung	Ga-BLM	 3.2	0.91		3.54	0.82		3.02	0.43		2.51	0.34		2.14	0.55
	Ga-CB	4.41	1.95		5.31	1.06		3.85	0.98		3.41	0.14		2.25	0.16
Spleen	Ga-BLM	2.1	0.12		2.17	0.19		2.32	0.23		0.95	0.36		0.86	0.78
	Ga-CB	 2.75	0.21		3.11	0.39		3.86	0.57		4.52	0.77		4.87	0.89
Muscle	Ga-BLM	2.36	0.11		1.72	0.1		1.32	0.16		0.84	0.14		0.83	0.13
	Ga-Cl3	2.41	0.72		2.45	0.89		2.41	0.46		2.23	0.14		1.63	0.13
Skin	Ga-BLM	1.76	0.09		2.56	0.15	_	2.81	0.21		2.92	0.17		2.36	0.11
	Ga-Cl3	2.86	0.67		3.12	1.06		3.63	1.13		2.81	0.84		2.37	0.76
Heart	Ga-BLM	1.12	0.12		1.11	0.14		1.05	0.21		0,84	0.18		0.71	0.12
	Ga-Cl3	2.31	0.13		2.16	0.15		2.32	0.22		2.13	0.19		1.46	0.19
Kidney	Ga-BLM	3.82	0.87		2.65	0.89		2.16	0.31		1.89	0.21		1.64	0.17
	Ga-CB	3.72	0.88		2.78	0.34		2.91	0.23		2.74	0.14		2.45	0.18
Colon	Ga-BLM	3.11	0.61		0.63	0.41	· · · ·	2.67	0.51		1.11	0.19		0.92	0.22
	Ga-Cl3	2.32	0.41		2.31	0.24		2.46	0.31		1.82	0.11		1.63	0.08
Colon	Ga-BLM	4.63	1.12		5.72	1.31		6.11	1.25		1.52	0.12		1.37	0.08
content	Ga-Cl3	3.61	0.17		4.51	0.15		3.89	0.31		1.98	0.08		1.82	0.13
Bladder	Ga-BLM	11.23	2.34		10.56	2.15		9.7	1.72		3.22	0.74		2.75	0.19
	Ga-CB	5.93	1.51		2.91	0.81		2.13	0.85		1.85	0.51		1.41	0.41

Table 1. Distribution of ⁶⁷Ga-BLM and ⁶⁷GaCl₃ in tumoral mice

Activity ratios of tumor to five tissues including blood, liver, lung, muscle and bladder are shown in figures 4 and 5 and for all tissues at two times (24 and 48 hours) after injection are shown in figures 6 and 7 for both radiopharmaceuticals.

Activity ratios of tumor to five tissues for both radio pharmaceuticals increased

with exception of liver at only one hour after. Tumor to blood and muscle ratios of ⁶⁷Ga-BLM at all time intervals were higher than ⁶⁷GaCl₃. Lung uptake of two radiopharmaceuticals reached to maximum after 2 hours post injection.

Whole body counting of animals by well counter at 1, 2, 4, 24, 48 and 72 hours post injection are shown as percent of total activity administered(40 μ Ci) for both radiopharmaceuticals in figure 8.

The clearance rate and washout of ⁶⁷Ga-BLM

is about 2 times faster than ${}^{67}\text{GaCl}_3$. The effective half lives of ${}^{67}\text{Ga-BLM}$ and ${}^{67}\text{GaCl}_3$ were calculated to be about 1 and 15.5 hours in tumoral model respectively. Regarding the physical half life of ${}^{67}\text{Ga}$ (78 hours), the biological half lives of ${}^{67}\text{Ga-BLM}$ and ${}^{67}\text{GaCl}_3$ were calculated to be about 1 and 18.9 hours respectively.

Discussion

search to find a new valuable In radiopharmaceutical for tumor imaging and therapy, this paper reports the optimum labeling of bleomycin with ⁶⁷Ga and the biodistribution of produced complex (⁶⁷Ga-BLM) in the fibrosarcoma-bearing mice.⁶⁷Ga in the form of ⁶⁷Ga-citrate has been used in nuclear medicine for tumor imaging for some time.

Fig. 3. Tissue distribution of ⁶⁷GaCL₃ in tumoral mice

Fig. 2. Tissue distribution of ⁶⁷Ga-BLM in tumoral mice

Fig. 4. Activity ratios of tumor to tissue for ⁶⁷Ga-BLM

æ.

Fig. 5. Activity ratios of tumor to tissue for "GaCL

Fig. 7. Activity ratios of tumor to tissue at 48 hours 🔅

Fig. 8. Percent of whole body retained activity after iv injection of rediopharmaceuticals

However, it had three main disadvantages: 1) high excretion in GItract causing a difficault clinical interpretation, 2) slow clearance rate from blood and GI tract in dictating a long time for imaging after administration, 3) low degree of sensitivity and specifity for detection of certain tumor types i.e. adenocarcinoma. The binding of chemotheraputic drug bleomycin having high tumor affinity, with tumor localizing agents such as ¹¹¹In and ⁶⁷Ga could be altered in tissue distribution when administered in tumoral mice.

Thin layer chromatography of produced 67 Ga-BLM complex showed only two major spots (Rf =0.4 and 0.6) containing 95% of total activity. When preparing 67 Ga-BLM, the pH must be kept around 2. This value certainly differs from those of 4.0-4.5 and 6.5 which were used for preparing of ¹¹¹In-BLM (8,9) and 67 Ga-BLM complex respectively (8-10). However the pH value of 2 is in full agreement with other investigators that used low pH between 2-3 for preparation of ¹¹¹In-BLM and ¹¹¹In-BLMC (11-

14).

As mentioned earlier, the biodistribution study of two radiopharmaceuticals (67 Ga-BLM and 67 GaCl₃) were carried out by sacrifing of animals and counting activity of wet tissues as percent of administered activity per gram of tissue.

Blood uptake of ⁶⁷Ga-BLM at all time intervals were lower than ⁶⁷GaCl₃ but, activity ratios of tumor to blood and muscle of ⁶⁷Ga-BLM was significantly higher than ⁶⁷GaCl₃ and gradually increased with time, which is in agreement with ¹¹¹In-BLM and ¹¹¹In-BLMC complexes (2-8). Higher blood uptake of ⁶⁷GaCl₃ is most likely due to transferrin binding of carrier free ⁶⁷Ga⁺³, hence lower blood uptake of ⁶⁷Ga-BLM complex can be considered as non-transferrin binding and stability *in-vivo*.

Higher bladder uptake and faster excretion of 67 Ga-BLM complex in comparison with 67 GaCl₃ is in agreement with studies comparing washout of 111 In-BLM complex and carrier free 111 In ${}^{+3}$ and 67 Ga ${}^{+3}$ (12,13).

There are considerable similarities between colon content uptake patterns of both radioparmaceuticals in tumoral and normal mice models showing high uptakes specially at first three hours after injection (18,25), which is in agreement with high GI tract secretion of ⁶⁷Ga in clinical clinical practice(19).

Biodistribution data clearly indicate that prepared complex (67 Ga-BLM) in comparison with carrier free 67 Ga (67 GaCl₃) had two main advantages: 1) high tumor to soft tissue uptake ratio that makes it suitable for tumor imaging, 2) faster excretion at first three hours post injection. These findings suggest that the produced complex could be a good choice for tumor detection in diagnostic nuclear medicine.

Tumor detection properties of ¹¹¹In-BLM and ⁵⁷Co-BLM were compared with ⁶⁷Ga-citrate in patients with various malignancies and it was

concluded that ¹¹¹In-BLM is not superior to ⁶⁷Gacitrate for tumor detection (20), hence further studies is suggested for clinical evaluation of ⁶⁷Ga-BLM in comparison with routinly used ⁶⁷Ga-citrate for tumor detection and imaging purposes (further study is in progress).

Acknowledgments

The authors wish to thank for all the assistance and support provided by collegues at the Nuclear Research Center for Agriculture & Medicine (NRCAM), Atomic Energy Organization of Iran (AEOI), Karaj, Iran: Dr. GH. R.Raeisali, Dr. H. Rafiei and the colleagues in the department of Cyclotron and Nuclear Medicine, Dr. AR Karimian, S Moradkhani and R Dejbankhan for the animal experimentation and radio- pharmaceutical preparation.

References

- Lopez MV, Alvarez CJ. Neoplasm localization with radionuclides. *Eur J Nucl Med* 1979; 4: 313-324.
- Blum RH , Carter SK , Agre K. Clinical review of bleomycin - a new antineoplastic agent.*Cancer* 1973; 31:903-914.
- 3) Crooke ST, Bradner WT. Bleomycin, a review. J Med 1976;7: 333-428.
- Shepherd FA, Mayer E, Cardella C, Cole E, Greig P ,Wade JA.Treatment of Caposi's sarcoma after solid organ transplantation. J Clin Oncol 1997; 15: 2371-2377.
- Glass LF, Pepine ML, Fenske NA, Jaroszeski M, Reintgen DS, Heller R. Bleomycin mediated electro-chemotherapy of metastatic melanoma. *Arch Dermatol* 1996;32: 1353-1357.
- 6) Hofmann GA, Dev SB, Dimmer S, Nanda GS. Electroporation therapy : A new

approach for the treatment of head and neck cancer. *IEEE Trans Biomed Eng* 1999; 46: 752-759.

- Kano E, Furakawa FM, Nitta K, Kajimoto KT, Picha P, Sugimoto K. Sensitivities of bleomycin resistant variant cells enhanced by 40°C hyperthermia in-vitro. *Int J Hyperthermia* 1988; 4 : 547-553.
- 8) Shinora H, Hayashi S, Matsumoto H,Kitai R, Ohtsubo T, Nishida T. The effects of combined treatments with low hyperthermia and bleomycin on survival of morine L cells. *J Exp Clin Cancer Res* 1997; 16: 147-152
- Horikoshi T, Naganuma IT,Ohashi Y,Ueno T, Nakai H. Enhancing effect of electrical stimulation on cytotoxicity of anticancer agent against rat and human glioma cells. *Brain Res Bulletin* 2000; 51: 371-378.

10) Jaroszeski MJ, Coppola D, Nesmith G,

Pottinger C, Ityacinte M, Benson K. Effects of electro- chemotherapy with bleomycin on normal liver tissue in a rat model. *Eur J Cancer* 2001; 37: 414- 421.

- 11) Hyacinte M, Jaroszeski MJ, Dang V, Coppola D, Karl RC, Gilbert RA. Electrically enhanced drug delivery for the treatment of soft tissue sarcoma. *Cancer* 1999; 75 : 409-417.
- 12)Hou DY, Hoch S, Johnston GS, Tson KC, Raymond JF, Miller EE. Stability of ¹¹¹In-Bleomycin in-vivo properties compared with ⁵⁷Co-bleomycin. *Eur J Nucl Med* 1983; 8 :535-540.
- 13) Hou DY, Hoch S, Johnston Gs, Tsou KC, Jones AE, Miller E, Larson SM. A new tumor imaging agent ¹¹¹In-Bleomycin complex. comparison with ⁶⁷Ga-citrate and ⁵⁷Cobleomycin in tumor bearing animals. *J Surg Oncol* 1984; 27: 189-195.
- 14) Hou DY, Maruyama Y. Distribution of ¹¹¹In-Bleomycin complex in small cell lung cancer cells by autoradiography. *J Surg Oncol* 1984; 49:93-97.
- 15) Hou DY, Hoch S, Johnston GS, Tsou KC, Jones AE, Farkas RJ, Miller EE. A new ¹¹¹In-Bleomycin complex for tumor imaging: Preparation, stability and distribution in glioma-bearing mice. *J Surg Oncol* 1984; 25: 168-175.
- 16) Hou DY, Hoch S, Johnston GS, Tsou KC, Farkas RJ, Miller EE. Distribution and stability of ¹¹¹In-Bleomycin and it's fractions in tumor-bearing mice. Int *J Nucl Med Biol* 1984;11: 129-139.
- 17)Engstrom PE, Person BRR and Salford LG.
 Dynamic gamma camera studies of ¹¹¹ In-Bleomycin complex in normal and glioma (32,RG2) bearing rats after in-vivo

electropermeabilization using exponential high voltage pulses. *Bioelectrochem Bioenerg* 1998; 46: 241-248.

- 18)Grove RB, Eckelman WC and Reba RC. Distribution of labeled bleomycin in normal and tumor-bearing mice. J Nucl Med 1973;14: 917-919.
- 19)Grove RB, Reba RC, Eckelman WC and Goodyear M. Clinical evaluation of radiolabeled bleomycin for tumor detection. J Nucl Med 1973;15: 386-390.
- 20)Krohn KA, meyers JM, Denardo GL and Denardo SG. Comparison of radiolabeled bleomycins and gallium citrate in tumor bearing mice. *J Nucl Med* 1973;18:276-281.
- 21)Robbins PY, Silverstin EB and Fortman DL. The preparation and distribution of ¹¹¹In-Bleomycin in mice as compared to ¹¹¹In-Cl₃ for tumor scannng. *J Nucl Med* 1973; 14: 637-639.
- 22)Brooks RC, Canochan P, Vollano JF, Powel NA, Zwiet J. Metal complexes of bleomycin: evaluation of [Rh-105]-Bleomycin for use in targeted radiotherapy. *Nucl Med Biol* 1999; 26: 421-430.
- 23)Kono A, Matsushima Y, Kojima M, Maeda T. Cobalt chelate of bleomycin. I. physioligical properties and distribution in tumor bearing mice. *Chem Pharm Bull* 1977; 25: 1725-1731.
- 24)Nouel JP. Radioactive metal-bleomycin complex for diagnosis of cancer. Gann Monograph Cancer Res 1976; 19: 301-316.
- 25)Tabeie F, Bolouri B, Jalilian AR, Mosaffa N, Rajabi H, Neshandar AE, Labibi F, Karimian AR, Shirazi B. Dynamic distribution of ⁶⁷Ga-Bleomycin complex and carrier free ⁶⁷Gallium in normal mice. *Iranian J Pharm Ther* 2002; 1: 24-29.