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ABSTRACT 
With the arrival of increasingly higher resolution PET systems, small amounts of motion can 

cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this 

work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient 

motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of motion 

(most often studies in PET brain imaging), conventional motion-correction algorithms have relied on 

extraction of the motion information from the emission data itself. However, the accuracy of motion 

compensation in this approach is degraded by the noisy nature of the emission data. Subsequently, 

advanced methods, as reviewed in this work, make use of external real-time measurements of motion. 

Various image-based and projection-based correction methods have been discussed and compared. 

The paper also reviews recent and novel applications that perform corrections for cardiac and 

respiratory motions. Unlike conventional gating schemes, in which the cardiac and respiratory gated 

frames are independently reconstructed (resulting in noisy images), the reviewed methods are seen to 

follow a common trend of seeking to produce images of higher quality by making collective use of all 

the gated frames (and the estimated motion). As an observation, a general theme in motion-correction 

methods is seen to be the use of increasingly sophisticated software to make use of existing advanced 

hardware. In this sense, this field is very open to future novel ideas (hardware, and especially 

software) aimed at improving motion detection, characterization and compensation.  
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I. INTRODUCTION 
Recent developments in 3D positron emission 

tomography (PET) systems have enabled the 

spatial resolution to reach the 2-5 mm FWHM 

(Full-Width-at-Half-Maximum) range. With such 

improvements in spatial resolution, even small 

amounts of motion during PET imaging become 

a significant source of resolution degradation. In 

other words, increased spending on new 

generation scanners can only be fully justified 

when appropriate motion correction methods are 

considered, in order to achieve the true resolution 

of the scanner. To see this, one may note (1) that 

the effective resolution of an image ∆eff can be 

written as: 
 

[ ] 2122
motiontomographeff ∆+∆=∆    

(1) 
where 

tomograph∆  denotes the intrinsic 

resolution of the scanner (FWHM), and motion∆  is 

the FWHM of the distribution of the patient’s 

motion. With tomograph∆ having become 

comparable to (and no longer much larger than) 

motion∆ , it is therefore essential to develop and 

implement accurate patient motion correction 

techniques. 

One must note that a number of motion 

correction methods developed for SPECT are not 

applicable to PET. This is because these methods 

rely on the time-dependence of projections in 

SPECT, due to rotating head(s), which is not the 

case in PET imaging. Nevertheless, a number of 

other methods implemented in SPECT imaging 

are equally applicable to PET (and vice versa) 

which we have reviewed in this work. 

This paper has been broadly categorized into 

the review and discussion of advanced correction 

methods for the three cases of (i) unwanted 

patient motion, as well as motions due to (ii) 

cardiac and (iii) respiratory cycles. Most of the 

existing literature on the first type of motion has 

been investigated and implemented in brain PET 

imaging, since the last two types of motion 

(which are dominant in whole-body and cardiac 

PET imaging) are absent in this case. Section II 

therefore discusses motion-correction methods in 

brain PET imaging, followed by discussions of 

advanced correction methods, in sections III and 

IV, for cardiac and respiratory cycle motions. 

These sections first discuss existing hardware 

instrumentation, followed by a review of 

advanced motion-correction algorithms which 

make use of such hardware to achieve motion-

compensated PET images. Finally, some important 

areas of future research are discussed in section 

V, followed by concluding remarks in section VI. 

 

II. BRAIN PET IMAGING 
Unlike cardiac and respiratory-related 

motions, patient movements in brain imaging are 

unanimously assumed to be of rigid nature (i.e. 

modeled as translational and/or rotational 

transformations only). As a typical PET brain 

imaging session can last hours, it is not 

reasonable to expect a patient to remain 

motionless during this time. A number of head 

restraints are nowadays common, such as 

thermoplastic masks or neoprene caps, which 

lower the amount of motion but do not eliminate 

it. Even with head restraints, typical translations 

in the range of 5-20 mm and rotations of 1-4o are 

observed1, depending on the type of mask and 

the duration of scan (e.g. see (2,3), and also (1) 

in which a study of various types of head 

movements, such as those caused by coughing 

and leg crossing, has been presented).  

Methods to correct for such patient 

movements were in the past largely based on 

correction of interscan movements. These 

                                                        
1. Largest translation typically occurs along the transaxial-(x) 

axis, and largest rotation around the axial-(z) axis. 
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(software-based) methods involved the division 

of a scan into a number of frames, followed by 

spatial registration of the reconstructed images 

using mathematical algorithms (e.g. see (4,5)). 

Nevertheless, motion correction strategies in 

emission computed tomography (ECT) that rely 

exclusively on emission data itself are inadequate 

for robust clinical usage, since (i) they depend on 

the quality of the scan data – including noise 

characteristics – and (ii) they assume the activity 

distribution does not significantly change within 

the frames, whereas the frames are chosen a 

priori. Because of these disadvantages, this 

review focuses on methods using external real-

time measurements of motion. 

Instrumentation: Aside from electromagnetic 

systems (which suffer from interference with 

eddy currents in the metal in the PET gantry) and 

acoustical devices (whose audible signal can be 

unacceptable especially for neurological studies), 

the following motion-tracking instruments can be 

mentioned: 

1) A video-camera-based surveillance system 

used by Picard and Thompson (6) which used 3 

LEDs attached to the head of the patient. The 

system had two CCD cameras placed on the 

gantry of the PET scanner.  

2) The system used by Goldstein et al. (7) 

based on opto-electronic position sensitive 

detectors, which worked by optical triangulation 

of three miniature (lamp) lights fixed to the 

patient's head. However, the large space between 

the cameras (1.25 m) prevents the use of this 

system in PET scanners with long and narrow 

gantry holes. 

3) The nowadays-popular high-resolution 

(<0.3mm) POLARIS system (1) which is an 

infrared (IR) opto-electronic motion tracking 

device using four IR-reflective spheres (depicted 

in Fig. 1). The system has the advantages that it 

is commercially available (<$15,000, Northern 

Digital Inc., Waterloo, Canada), and that using 

IR-light2, it is insensitive to room lighting 

conditions and takes much less disk space to 

store the IR-tracker output compared to optical 

image sequences. However, POLARIS has the 

disadvantage that the reflective spheres need to 

be affixed in a precisely known geometry3, and 

furthermore, similar to all aforementioned 

methods, the issue of possible relative motion 

between the skin and the skull, during the scan, 

remains potentially problematic, making the 

accuracy of these techniques questionable. It is a 

topic of growing and great interest to the ECT 

community to minimize or eliminate the latter 

problem through innovative methods and/or 

technology.  
 

 
 
 
 

 

 
 
Figure 1: The POLARIS system uses four 

infrared-reflective spheres placed in a precisely 

known geometry. 

 

Motion-correction algorithms: Assuming 

accurate measurement of patient movement 

during the scan, a number of approaches to 

motion compensation have been proposed: 

                                                        
2. A system with CCD video cameras also sensitive to IR 

light was used in (8); however the reflectors were affixed to a 

landmark device that was rigidly attached to the teeth of the 

subject’s upper jaw, which proved to be inconvenient for the 

patients. 

3. A proposed solution to this, as shown in www.tru-

scan.com (Tru-Scan Imaging Inc.), is the use of head-sets on 

top of which a plastic board is attached which can be used to 

hold the POLARIS spheres in the desired geometry. 
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1) One method (9,3) involves dividing of 

detected events into multiple acquisition frames 

(MAFs). That is, with the use of an external 

monitoring system, every time the displacement 

of the patient is measured to be larger than a 

specified threshold, the PET data are saved in a 

new frame. This is then followed by correction 

of the individually-reconstructed images of the 

MAFs, via rotation and translation, to 

compensate for the measured amount of motion 

(i.e. this is an image-driven approach). 

The major limitation of the MAF approach is 

that by using a high motion threshold, motion 

within the frames are neglected; and lowering the 

motion threshold can instead result in the 

acquisition of an increasing number of low-

statistic frames to be reconstructed, especially in 

the presence of considerable movement. Lack of an 

adequate number of acquired events in the 

individual frames can in turn adversely affect the 

quality of the final reconstructed images, and an 

increased number of frames will also lead to 

increased reconstruction times. 

2) Another image-driven correction method 

proposed by Menke et al. (8) involves post-

processing of the motion-blurred reconstructed 

images using de-convolution operators (whose 

shape is determined by the measured motion). 

Nevertheless, this method has not attracted much 

attention because even though it is theoretically 

accurate for noise-less data, (i) the de-

convolution process amplifies the noise in the 

PET data, and (ii) when the movements include 

significant rotation, spatially-variant de-

convolution filters need to be employed, which 

increases the computational costs and can 

introduce other artifacts (8). 

3) A more accurate approach consists of 

correcting individual lines-of-response (LORs) 

for motion (10) (this is an event-driven approach); 

i.e. motion correction is performed by transforming 

the LORs along which the events are measured 

to where they would have been measured if the 

object had not moved (this is shown in Fig. 2 for 

the example of an octagonal scanner). 

 

 
 

 
 
 
 
 
 

Figure 2: An event that would have been 

detected along LOR i is detected along LOR i’ due 

to motion. From the measured motion 

information, one can then transform LOR i’ back 

into LOR i. 

 
The method was elaborated and implemented 

by Menke et al. (8), and required some hardware 

modification to achieve on-the-fly motion-

corrected LORs. However in that work, due to 

hardware limitations, the corrected LORs where 

not corrected by normalization factors that 

corresponded to the original detector-pairs (along 

which the events were detected), and instead the 

normalization factors for the transformed LORs 

were used. This normalization mismatch has 

recently been shown to result in artifacts (11).  

Alternatively, to solve this problem, one 

requires a PET scanner either (i) equipped with 

more specialized hardware to achieve accurate 

on-the-fly normalization correction followed by 

LOR-transformation; e.g. see (12), or (ii) capable 

of acquiring data in list-mode format, so that 

LOR corrections can be accurately performed 

post-acquisition; e.g. see (2). 

Beyond the purely event-driven approach: 

The above approach neglects two issues, as 

raised by Huesman and Qi (13), Rahmim et al. 
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(14), Thielemans et al. (15) and Buhler et al. (11), 

which we shall refer to as (issue 1) and (issue 2): 

(Issue 1) An event that is normally detected 

can exit the PET scanner undetected because of 

motion. This therefore results in a loss of events 

that would normally have been detected, an 

effect that is not modeled by regular 

reconstruction methods. 

(Issue 2) On the other hand, an event that is 

normally not detected (i.e. not passing through 

PET detectors) may be detected because of 

motion. Therefore, after correction for motion, 

some detected events may correspond to no 

actual detector pairs.  

These two effects can occur in two ways: 

(a) Along the axial direction of the scanner, 

via translation (as shown in Fig. 3) or rotation 

(not shown); or 

(b) Similarly via translation or rotation, along 

the transaxial direction, but only for scanners 

with gaps in between the detectors (an example 

of this is the High Resolution Research 

Tomograph - HRRT (16) which has an octagonal 

design with gaps in-between the heads). This 

effect is shown in Fig. 4 (for the case of 

translation). 
 

 

 

 

 

 

 

 

 

Figure 3: Axial motion can result in (issue 1) 

LOR i not to be detected (i’), and (issue 2) LOR 

k, which is normally not detected, to be actually 

detected (as k). The effect is shown due to 

translation, but is equally valid for rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Transaxial motion, for scanners with 

gaps in between the detector heads, can result in 

the exact same issues as shown in Fig. 3.  

 

 

Presence of these two issues can imply the 

need for a more accurate modeling of the image-

data relation into the reconstruction task; 

otherwise, neglecting the first issue can produce 

image artifacts, as demonstrated by simulation 

(15,11) or experimentally (14), and neglecting 

the LORs obtained in the second case can result 

in a loss of signal-to-noise ratio (SNR) in the 

images, as we describe later. Below we review a 

number of proposed solutions to one or both of 

these issues: 

4) A method suggested by Thielemans et al. 

(15) addressing (issue 1) involves scaling of 

counts recorded in the motion-corrected 

sinogram bins in order to correct for the events 

that were lost due to motion, where the scale 

factors are computed by averaging of LOR 

weighting factors using the measured motion 

information. This can be thought of as a ``motion 

pre-correction'' technique applied to the sinogram 

bins before the image reconstruction task.  

5) The method investigated by Buhler et al. 

(11), similarly addressing (issue 1), involves 

using the motion information to divide the total 
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counts in each  motion-corrected sinogram bin 

by the factor tdetectable/ttotal  i.e. the fraction of time 

each sinogram bin could have been detected by 

the scanner. Aside from the issue of 

normalization correction, this method can be 

shown, though not obvious, to be equivalent to 

the previous method. However, this method pre-

corrects the individual measured events by 

related normalization factors, whereas the 

previous method, which is expected (15) to 

exhibit less noise, first sums the un-normalized 

motion-corrected LORs and then performs 

normalization correction (by an accurately-

calculated overall factor). 

The above two methods have two potential 

difficulties: 

(a) They may require consideration of noise 

enhancement issues, as is done in (15) when 

dividing by small scale factors.  

(b) They address (issue 1) but not (issue 2) 

because they simply discard motion-corrected 

events which do not correspond to actual 

detector elements. It must be noted that 

neglecting such events should not result in image 

artifacts (unlike neglecting (issue 1)) since the 

patient will be still sampled enough by the 

existing detector pairs; however it can result in a 

loss of SNR in the images since some of the 

measured signal with useful information is 

simply discarded. 

(iii) A method capable of addressing both 

(issue 1) and (issue 2) has been elaborated by 

Rahmim et al. (14). The approach is based on 

modification of the probability system matrix of 

the iterative expectation-maximization (EM) 

algorithm. Momentarily neglecting various 

correction terms (e.g. normalization, 

attenuation), the regular histogram-mode EM 

algorithm can be written as 

∑
∑∑ =

==

=
I

i
J

b

old
ij

ij
I

i
ij

old
new

jfp

inp

p

jf
jf

1

11

)(

)()(
)(  

(2) 

where )( jf old and )( jf new  are previous and 

current activity-distribution image estimates in 

the iterative EM algorithm, n(i) is the number of 

events detected along an LOR i, and pij, often 

referred to as the system matrix element, is the 

probability that an emission from voxel j 

(j=1…J) is detected along an LOR i (i=1…I). 

For a motion-corrected sinogram (wherein all the 

events were first corrected for motion before 

histogramming), the proposed algorithm is able 

to accurately address issues 1 and 2, and can be 

written as  

 

∑
∑∫∑ =

== =

=
I

i
J

b

old
ij

ij
T

t

I

i

t
iij

old
new

jfp

inp

dtp
T

jf
jf

1

10 1

)(

)(

1

)(
)(

δ
 

(3) 

where T is the duration of the scan, and t
iδ is 

1 if an LOR i was detectable at time t, and 0 

otherwise. Normalization correction can 

subsequently be included either (i) as a pre-

correction factor (similar to (11)), or (ii) as an 

intrinsic component of the system matrix element 

(somewhat similar to (15)). The reader is referred 

to Ref. (14) for more details.  

The above approach has also been proposed 

(17,14) for list-mode image reconstruction. The 

list-mode reconstruction approach has a number 

of general advantages compared to the 

histogram-mode approach, as elaborated in 

(18,19); in the context of motion correction, the 

following two potential advantages can be 

mentioned: 

(a) Events are corrected for motion during 

(and not before) the image reconstruction task, 

which means that the motion-corrected 
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coordinates can be processed as continuous 

variables, therefore improving the accuracy 

(whereas time-consuming interpolations may 

instead be required in histogram-mode methods, 

as nicely demonstrated by (11), mainly because 

sinogram bins are not continuous). 

(b) Addressing (issue 2) is more convenient 

in list-mode reconstruction, because in 

histogram-mode methods, one would have to 

extend the sinogram-space in order to record all 

motion-corrected events (even those that would 

not have been detected in the absence of motion), 

whereas in list-mode reconstruction, such events 

are very easily handled. 

Furthermore, Rahmim et al. (14) have also 

shown that, with appropriate modifications, 

calculation of the motion-averaging term  

 

∫ ∑
= =

T

t

I

i

t
iij dtp

T 0 1

1
δ  can be conveniently  

 

performed in image-space (instead of projection-

space) which for current high-resolution scanners 

can improve the calculation speed significantly4 

(e.g. the HRRT scanner, with no axial 

compression i.e. span 1, has ~800M sinogram 

bins compared to only ~14M voxels in image-

space).  

 

III. MOTION DUE TO THE 
CARDIAC CYCLE 

While a spatial resolution of <5 mm is 

possible with today’s PET scanners, the base of 

the heart moves 9-14 mm towards the apex, and 

the myocardial walls thicken from approximately 

10 mm to over 15 mm between end-diastole and 

                                                        
4. In projection-space, Carson et al. (20) have proposed to 

perform the above calculation over only a randomized subset 

of the projection-space, in order to produce a fast, practical 

algorithm; however, the image-space approach proposed in 

(14) can yield a practical and accurate algorithm with 

complete (non-randomized) processing of the LORs. 

end-systole, as measured from tagged MR 

images (21). Compared to the intrinsic resolution 

of today’s scanners, cardiac motion can therefore 

result in significantly blurred images (as seen by 

Eq. 1). Most common approach in ECT to 

cardiac cycle motions is gating of the data into 

frames, each representing a particular cardiac 

phase, as we explain next. 

Instrumentation: Cardiac gating is most 

commonly performed with the aid of 

electrocardiograph (ECG) devices. By 

convention, the R-wave (which precedes 

ventricular contraction) is chosen as the gating 

signal because it has the greatest amplitude, and 

is therefore more easily identified in the ECG. In 

scanners with the list-mode acquisition 

capability, sorting of the list-mode data into 

gated frames can be performed after the 

acquisition (e.g. see (22)), whereas in 

conventional scanners (i.e. with histogram-mode 

acquisition only), on-the-fly ECG-triggered data 

acquisition is employed (e.g. see (23)). 

Typically, the cardiac cycle is divided into 

50-100 ms time frames, and an acquisition 

ranging from 5-60 minutes is acquired. Most 

commonly, the obtained cardiac-gated datasets 

(i.e. cardiac frames) are then independently 

reconstructed (as shown in Fig. 5). This approach 

is successful in nearly removing the cardiac-

motion blurring of the images; however, it can 

produce images which are (much) noisier than a 

reconstruction of the ungated data, since each 

gated dataset contains (much) less statistics 

compared to the entire dataset, and therefore, the 

clinical utility of this approach is very 

questionable.  
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Figure 5: In conventional gated schemes, the 

gated frames are independently reconstructed (in 

this example, N=4 gated frames are shown). 
 

 

Motion-correction algorithms: The 

motivation behind advanced correction methods 

in cardiac imaging is two-fold: 

(i) To further improve the quality of cardiac 

PET images (noise, resolution) so as to enhance 

identifiably of radiotracer uptake defects in the 

left ventricle by the clinicians, since regions of 

decreased radiotracer uptake can be indicative of 

hibernating or infracted myocardial tissue (24). 

This is also important when applying quantitative 

measures of perfusion and metabolic parameters 

in dynamic compartmental modeling studies 

(25).  

(ii) Measurement of motion itself can be 

useful for characterizing cardiac function (26). 

Measures such as ejection fraction and regional 

wall thickening may be derived from a measure 

of contractile motion in this way. 

In this section, we neglect the problem of 

cardiac motion due to the respiratory cycle, 

which is discussed in the next section. Below, we 

outline five important motion correction 

approaches which have been proposed in the 

literature. A common theme amongst these 

advanced methods is that they seek to move 

beyond the conventional gated scheme (as was 

shown in Fig. 5) and instead seek to obtain 

images which make collective use of all the 

gated frames (as depicted in Fig 6). In this way, 

motion information is extracted from the 

measured dataset (with the exception of approach 

3 which uses modeling), and is used in addition 

to all the gated frames to obtain images of higher 

quality.  

 

 

 

 

 

 

 

 

 

 

Figure 6: In motion-correction gated schemes, 

individual images are reconstructed using 

information from the complete dataset. 

 

 

The first three outlined works incorporate the 

measured or modeled motion-information into 

4D image reconstruction tasks, while the fourth 

approach performs the motion estimation and 

image reconstruction tasks simultaneously. 

Approach 5, on the other hand, performs image-

based motion correction and summing of 3D 

reconstructed images. These are elaborated 

below: 

1) In (27,28), Brankov et al. have replaced 

the uniform-voxel framework with the use of 

mesh modeling: an efficient image description 

based on non-uniform sampling (mesh nodes are 

placed most densely in image regions having fine 

detail). This approach is a natural framework for 

reconstruction of motion image sequences, 

wherein mesh elements are allowed to deform 
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over time5. Using a gradient-descent search 

algorithm applied to initial cardiac gated images, 

the authors are able to determine the motion field 

vector )(xlkd →  mapping a mesh element x 

from the current frame k to another frame l. The 

authors have subsequently used the following 

motion-compensated temporal summation when 

reconstructing each frame k: 

 

∑
=

→−=
K

l
lklk ff

1
))(()(ˆ xdxx  

(4) 

where )(xlf  is the image estimate for the 

lth frame (k=1…K), and the above expression 

can be applied as (i) an inter-iteration temporal 

filter in iterative reconstruction, or as (ii) a post-

reconstruction filter6. The above 

summation/filtering step is therefore able to 

improve the SNR obtained in the cardiac images, 

since it makes use of information from other 

frames also, when reconstructing a given frame 

k. 

Before explaining the remaining methods, we 

must first explain the concept of MAP image 

reconstruction: A main drawback with the 

commonly-used expectation maximization (EM) 

algorithms is that with further iterations the 

images become increasingly noisy. To tackle 

this, often a post-reconstruction smoothing filter 

is used. However, post-filtering, even though 

lowering the noise, also degrades image 

resolution. Alternatively, maximum a posteriori 

probability (MAP) methods7 have been proposed 

                                                        
5. See http://www.ipl.iit.edu/brankov/MIC02_4D.htm for a 

very nice dynamic demonstration of this method. 

6. Meanwhile, though not shown here, the authors have 

added another term to the above expression in order to 

account for brightening of the myocardium as it thickens due 

to the partial volume effect. 

7. This is also referred to as the Baysian method (originally 

derived from a simple application of Bayes' rule to image 

which, in the 3D-framework, seek to minimize 

variations between voxels and their neighboring 

voxels. A particular class of the MAP method 

(first utilized by Geman and McClure (29) in 

nuclear medicine), instead of maximizing the 

Poisson log-likelihood function L(F), as is the 

case with the regular EM algorithm, instead seek 

to maximize the MAP function L(F)-βV(F), 

where V(F)  is a potential function that decreases 

in value with less variations for neighboring 

voxel (β is a smoothing parameter set by the 

user: the higher its value, the greater the amount 

of smoothing encouraged in the images). 

For instance, the so-called 3D-MAP-EM one-

step-late (OSL) algorithm, introduced by Green 

(30) and aimed to maximize the above MAP 

function, can be written as 
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(5) 

and is able to suppress noise more 

successfully than the regular EM algorithm 

which can be thought of as a special case of the 

MAP method with β=0. An interesting 

observation is that the above approach can be 

extended to a 4D-MAP algorithm - e.g. see 

(31,32) - in which one uses a summation of 

spatial )(FVssβ  and temporal 

)(FVttβ potential functions, in order to 

encourage smoothing between neighboring 

voxels in both the spatial and temporal 

directions. We now proceed to explain how 

motion compensation has been incorporated 

within the 4D-MAP framework in some of the 

following works. 

2) In (31), Gravier et al. initially reconstruct 

                                                                             
reconstruction). It is also, sometimes, referred to as penalized 

likelihood (PL) image reconstruction. 



D
ow

nl
oa

de
d 

fr
om

 h
ttp

://
jo

ur
na

ls
.tu

m
s.

ac
.ir

/ 
on

 M
on

da
y,

 A
ug

us
t 1

3,
 2

01
2

10       Iran J Nucl Med 2005; Vol 13 , No 24 Arman Rahmim  

the gated frames using the fast filtered 

backprojection (FBP) algorithm, followed by 

low-pass filtering to reduce the noise. They then 

use the optical flow approach developed by Horn 

and Schunck (33) to estimate the motion in-

between the reconstructed images. Finally, they 

use the 4D-MAP-EM-OSL algorithm (4) while 

defining: 
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= =
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(6) 

where )( jf kl→ denotes the estimated image 

intensity (in frame l) at the location 

corresponding to voxel j of frame k (considering 

the motion). In this way, smoothing is 

encouraged between voxels in all the frame 

sequences while taking the motion of the voxels 

into consideration, and therefore one is able to 

suppress the noise level that is normally obtained 

in gated frame images. 

3) In the work of Lalush et al. (32,34) in 

SPECT imaging (which can be similarly applied 

to PET), a similar 4D-MAP-EM-OSL approach 

as above has been considered, except that motion 

is modeled and assumed to be known a priori 

(and not measured from initial gated images). 

The motion vectors are computed by modeling 

the left ventricular inner and outer walls as 

ellipsoids that undergo affine transformations 

(rotation, scaling, and translation) with each 

frame. The exact form of the potential function is 

also different in this work. It must be noted, 

however, that the authors have not observed a 

noticeable degradation when the motion 

information is simply not included in the 4D-

MAP algorithm method (which may have been 

due to the limited resolution of their scanner). 

Furthermore, Comparison of the above two 

approaches is an interesting area of future 

research, as we discuss in section V.  

4) Very commonly in the literature, cardiac 

motion is estimated after reconstructions of gated 

frames; and in the previously mentioned 

techniques, this extracted motion information is 

then used in subsequent reconstructions to yield 

enhanced images (i.e. improved SNRs). In (35) 

however, Cao et al. have hypothesized that, 

given the close link between the image 

reconstruction and motion estimation steps, a 

simultaneous method of estimating the two will 

be better able to (i) reduce motion blur and 

compensate for poor SNRs, and to (ii) improve 

the accuracy of the estimated motion. Their 

proposed algorithm works by two-step 

minimization of a joint energy functional term 

(that includes both image likelihood and motion-

matching terms). This work has also been 

extended from a two-frame approach to the 

complete cardiac cycle in (36). This is a very 

novel approach, yet its accuracy remains to be 

demonstrated (e.g. it remains to be verified that 

the estimated motion matches the actual motion 

of the heart as measured by, for instance, tagged 

MR). 

5) Klein and Huesman (37) have developed a 

sophisticated motion-estimation approach which 

exhibits an impressive knowledge of cardiac 

anatomy, and makes use of a non-uniform elastic 

material model to provide accurate estimates of 

heart motion (from individually reconstructed 

gated frames). The authors then continue to 

perform non-rigid/deformed summing of the 

gated images making use of the motion 

information (i.e. image-based motion-

compensation). Alternatively, one must note that 

the estimated motion can instead be directly 

incorporated into 4D image reconstruction tasks, 

as explained in the previous works. 
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IV. MOTION DUE TO THE 
RESPIRATORY CYCLE 

The common approach to the problem of 

respiratory blurring of PET images has been that 

of respiratory gating. For instance, respiratory-

gated PET has been investigated in imaging of 

lung cancer to reduce breathing motion artifacts 

(38,39). In cardiac imaging, combined cardiac-

respiratory gating has been implemented in 

human (40) and animal (22) studies.   

Instrumentation: A number of instruments 

are used for the purpose of measuring respiratory 

motion: 

1) Commonly, a pneumatic bellows is placed 

around the mid-abdomen of the patient, which 

monitors variation in pressure in the belt-

assembly with stretching of the belt during 

respiration; e.g. see (41).  

2) Another approach (42) involves the Real-

Time Position Management (RPM) Respiratory 

Gating system (Varian Medical Systems), which 

monitors the motion of the chest wall of the 

patient by infrared tracking of the vertical 

position of two reflective markers mounted on a 

plastic block (stabilized on the patient’s 

abdomen). 

3) Livieratos et al. (43) have used an 

inductive respiration monitor (RespiTrace R250, 

Studley Data Systems) with a belt around the 

patient’s chest.  

4) In animal (mouse) imaging, a respiration 

sensor (Graseby Medical Limited) has been used 

by Yang et al. (22) to provide the respiratory 

signal, being taped to the animal’s chest, and 

connected to a high sensitivity differential 

pressure transducer.  

5) Finally, Beach et al. (41) have used the 

POLARIS system (described in section II) during 

cardiac imaging (which has the advantage of 

monitoring both respiratory and unwanted 

motions). Four infrared reflective markers were 

placed on an elastic material band, placed around 

the patient’s mid to lower abdomen.  

Respiratory-Correlated Dynamic Imaging: In 

the work by Nehmeh et al. (42), an alternate 

method which performs respiratory phase-

isolation while not making use of gating has been 

implemented (in lung imaging). A radioactive 

point-source was set on the patient’s abdomen, 

and the data were acquired in very short (e.g. 1-

sec) consecutive time frames and were 

individually reconstructed. In order to capture a 

specific phase within the breathing cycle, all the 

images were next analyzed, and those with the 

point-source at a specific (user-selected) position 

were then identified, with the corresponding 

sinograms summed and reconstructed using 

iterative reconstruction.  

This method compared to respiratory gating, 

while involving significantly more computation, 

has the advantages that: (i) it does not require 

tracking hardware to monitor and trace 

respiratory motion (a benefit for small 

institutions that do not have a gating system), (ii) 

it allows reconstruction of PET images at any 

breathing phase (e.g. phase-matching with the 

CT image data acquired on PET/CT scanners), 

and (iii) it is less susceptible to irregular 

breathing and allows the exclusion of data from 

irregular breathing cycles. Nevertheless, it has 

the disadvantage, similar to the conventional 

gating approach, that less data is used in each 

reconstruction, and thus the obtained images are 

more noisy. 

Motion-correction algorithms: below we 

review two proposed advanced methods (one 

based in projection-space and one in image-

space) that seek to obtain images of higher 

quality compared to images that are otherwise 

obtained (i.e. by regular respiratory-gating or 

respiratory-correlated dynamic imaging): 

1) The work by Livieratos et al. (43) 
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performs cardiac imaging by modeling of the 

respiratory motion of the heart as a rigid-body 

motion, and the parameters for motion correction 

are obtained from an initial series of respiration-

only gated images via edge-tracking of the left 

ventricle (23).   The obtained model is then 

applied in the form of rigid-body transformations 

(i.e. translations and rotations) on the list-mode 

data event-by-event (i.e. motion correction in 

projection-space). The list-mode approach allows 

one to make maximal use of the time resolution 

of list-mode data for interpolation of motion 

parameters, thus potentially achieving higher 

accuracy in respiratory motion compensation. 

After correction of the data for respiratory 

motion, the authors have proposed to use simple 

cardiac gating for the rest of the imaging task; 

however, we note that the more advanced 

methods presented in the last section can instead 

be used.  

2) Klein et al. (44) have investigated a 

twelve-parameter affine motion model for 4D-

registration of different respiratory gates, which 

in addition to the six parameters of rotation and 

translation, allows for three scale and three skew 

parameters for non-rigid motion. However, this 

approach, which was based in the image-space, 

was applied to doubly-gated cardiac PET 

sequence as it required images with high SNR 

for appropriate registration. 

Rigid vs. non-rigid modeling of the 

respiratory motion of the heart: While (43) has 

claimed the validity of modeling (i.e. 

approximating) respiratory motion of the heart as 

rigid-body motion, a number of other works may 

suggest that non-rigid modeling of respiratory 

motion of the heart may be beneficial. To start, 

we note that the non-rigidity of respiratory 

motion of the heart, which is related to it being 

pushed and pulled by the diaphragm and other 

connected tissue, has been investigated using a 

number of modalities. For instance, the gated CT 

study in (45) measured on dogs, has recorded an 

average change of 12% in the total end-diastolic 

heart volume during forced positive pressure 

inspiration at 15 cm H2O. Using 

echocardiography, similar shape changes have 

been found in human subjects (46). 

Related work by Klein et al. (44) in PET 

imaging is particularly worth noting: in that 

work, quantitative measures of respiratory 

motion of the heart were extracted from ten 

respiratory-gated patient studies. Translations 

between end-inspiration and end-expiration were 

often greater than 10 mm and ranged from 1 to 

over 20 mm (rigid motion). Moreover, the left 

ventricle exhibited fairly large compression 

factors8 (non-rigid motion) - close to 10% in a 

number of cases – computed as the product of 

the three extension factors along the x, y and z 

directions.  

The extension factors were largest along the 

superior/inferior axis (~5%), which, given the 

typical 80-100 mm dimension of the left 

ventricle along this direction, would result in a 

heart image that would be 4-5 mm too small if 

motion was assumed simply rigid. Compared to 

the average 10-mm thickness of the left 

ventricular wall, this scaling error may therefore 

be considerable. However, with the ECAT 

EXACT HR scanner, only small improvements 

were actually observed (44) after performing 

non-rigid motion modeling, though it is expected 

that in next-generation (higher-resolution) 

scanners further improvements may be observed. 

 

V. AREAS OF FUTURE RESEARCH 
In this section, I shall attempt to outline few 

areas of research in motion correction that still 

                                                        
8. The left ventricle was generally largest at inspiration and 

smallest at end-expiration.  
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involve open questions, and important areas 

which demand further inquiries and research: 

1) Current motion tracking and correction 

methods in brain imaging do not address the 

occurrence of relative motions between the skin 

and the skull during the scans. This can imply an 

inaccuracy since motion-tracking lights or 

reflectors only follow the motion of the surface 

area  to which they are attached (and not 

necessarily the regions of interest inside the 

brain). It is currently a topic of growing interest 

to introduce novel methods of characterizing and 

correcting for this issue. 

2) Incorporation of accurate coincidental-

accidence (random) and scattered events 

correction terms, considering patient motion, has 

received little attention in the past, since 

normalization/attenuation correction and LOR 

transformations have been the major issues. In 

this regard, we note that current random and 

scatter estimation techniques simply assume a 

static patient, and therefore, further attention 

needs to be paid to this topic. 

3) In cardiac imaging, it remains an open 

question as to whether (and in which imaging 

conditions) it is best to estimate cardiac motion 

simultaneously with the image reconstruction 

task (as is done in (35)) or before application of 

an advanced image reconstruction algorithm 

(that makes use of the estimated motion). It also 

remains an open task to compare the qualities of 

motion-information obtained from (i) 

individually-reconstructed cardiac images (e.g. 

as is done in (31)), or (ii) by means of modeling 

(e.g. as is done in (32,34)); the comparison is not 

trivial because the first approach relies on 

initially noisy images while accuracy of the 

second general approach in the context of 

distinct individual orientations and conditions is 

in question. 

4) In respiratory motion correction, it remains 

an area of future research to determine whether 

non-rigid modeling of respiratory motion of the 

heart has observable advantages compared to 

rigid modeling. 

5) While estimated rigid movements can be 

easily corrected for in projection-space (by 

simple translations and rotations of the LORs), it 

is not straightforward to implement such LOR 

motion compensations for non-rigid motion. This 

is, for instance, the reason Klein et al. (44) 

performed correction of the estimated non-rigid 

respiratory motion of the heart in image-space. 

However, projection-space correction methods 

have the advantage that they make maximal use 

of the time resolution of data (unlike image-

space method which do not assume any motion 

within the gated images). Therefore, it remains 

an important topic of interest as to whether it is 

possible/suitable to implement non-rigid motion 

compensation in projection-space. 

6) The principle component analysis (PCA) 

method elaborated in (47) is a very efficient and 

natural framework for fast 4D image 

reconstructions. The method is developed for the 

motion-free object assumption however, though 

it has been shown (48) to work very well in 

reconstructing cardiac image sequences as well 

(which can indicate that the method is somehow 

able to intrinsically capture and incorporate 

motion information). More work is needed in this 

area to shed light on the potentials of this 

technique to include accurate motion 

compensation.  

 

VI. CONCLUSION 
In this work, we have reviewed advanced 

correction methods in PET for the three cases of 

(i) unwanted patient motion, as well as motions 

due to (ii) cardiac and (iii) respiratory cycles. 

Nearly all the work related to the first type of 

motion has been in brain PET imaging. We have 
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noted that use of an external motion tracking 

device (and not solely relying on the emission 

data) is and becoming popular for high resolution 

PET imaging.  

In brain PET imaging, given the rigid nature 

of motion, it is seen to be more accurate to 

perform motion corrections in projection-space, 

instead of image-space, to make maximal use of 

the time resolution of data. A number of 

reviewed works have also observed and proposed 

solutions to complications caused by the motion-

based interactions of LORs that are normally 

detectable and those which are not (e.g. axially 

out of the field-of-view or passing through 

detector gaps).  

In advanced cardiac and respiratory 

correction schemes, this paper has observed a 

general attempt to move beyond the noisy 

images obtained by cardiac- and respiratory-

gated data which are individually reconstructed, 

and instead, advanced techniques are seen to 

make use of novel motion estimation and image 

reconstruction applications to obtain images of 

enhanced quality (improved SNR and 

resolution). It is therefore observed from the 

works reviewed in this paper that a general 

theme has been the use of increasingly 

sophisticated software to make use of existing 

advanced hardware, and that the field of motion 

correction in high resolution PET is very open to 

future novel ideas (hardware, and especially 

software) aimed at improving motion detection, 

characterization and compensation.  
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