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ABSTRACT 

 
In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET 
imaging. We will discuss existing limitations in conventional dynamic PET imaging which 
involves independent reconstruction of dynamic PET datasets. Various approaches that seek to 
attempt some or all of these limitations are reviewed in this work, including techniques that 
utilize iterative temporal smoothing, advanced temporal basis functions, principal components 
transformation of the dynamic data, wavelet-based techniques as well as direct kinetic 
parameter estimation methods. Extension of 4D PET to 5D PET in which the additional 
dimension of (respiratory or cardiac) gating is considered has also been discussed. 
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1. INTRODUCTION AND MOTIVATION 

One of the important aspects of nuclear medicine 
imaging using the PET modality is the inherent ability 
to perform dynamic imaging (1). This is a very notable 
capability allowing measurements of change in the 
bio-distribution of radiopharmaceuticals within the 
organ(s) of interest over time. This in turn offers very 
useful information about the underlying physiological 
or metabolic processes, as commonly extracted using 
various kinetic modeling techniques. Below we outline 
the three standard steps commonly performed in 
dynamic PET imaging: 
 

Dynamic PET Acquisition 
Dynamic PET acquisition can be performed using two 
general approaches depending on whether the scanner 
has the list-mode acquisition capability; i.e. the ability 
to store time-of-detection along with the spatial 
coordinates for the detected events (2). If such ability 
does not exist, the standard approach is to pre-specify, 
prior to data acquisition, the framing sequence of 
interest, and to bin the detected events in the 
corresponding sinograms to each frame. By contrast, 
the list-mode acquisition capability allows the added  
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flexibility of specifying the framing sequence post-
acquisition. It is worth emphasizing that list-mode 
acquisition is distinct from list-mode reconstruction; 
the former (increasingly employed in PET scanners) is 
only a pre-requisite for the latter which offers added 
benefits in the image reconstruction task itself (2), as 
also mentioned in this paper in the context of 4D PET 
image reconstruction. 

1.1 Dynamic PET Reconstruction 
Following dynamic framing of the acquired data as 
outlined above, the common approach to dynamic PET 
imaging reconstruction consists of independently 
reconstructing tomographic data within each dynamic 
frame. Following this step, one arrives at a set of 
dynamic images intended to specify the variation of 
activity over time throughout the reconstructed field-
of-view. 

1.2 Dynamic Kinetic Parameter Estimation 
Following the reconstruction step, the underlying 
functional parameters of interest (e.g. binding 
potential BP, maximum binding potential Bmax, 
dissociation constant of binding Kd, etc.) can be 
obtained using a number of tracer kinetic modeling 
techniques (e.g. see (3) for a review). Most commonly, 
compartmental modeling techniques are utilized, and 
are applied to time-activity-curves (TACs) extracted 
for either (i) particular regions of interest (ROIs), or 
(ii) at the voxel level, the latter resulting in parametric 
images. 

1.3 Issues with Conventional Dynamic Imaging 
The aforementioned standard approach to dynamic 
PET imaging suffers from three issues: 
(1) The independent reconstruction of each of the 
(typically) many frames of the data can result in very 
noisy images. 
 (2) Conventional reconstruction assumes that the 
activity within each dynamic frame is static, thus 
resulting in potentially biased images.  
 To minimize the resulting bias from this 
assumption, one may instead use a higher number of 
frames to better sample activity variations over time; 
however, this will result in even higher noise levels 
(i.e. better addressing the second issue (bias) amplifies 
the first issue with noise; the inverse is also the case). 
 (3) Accurate application of tracer kinetic modeling 
requires knowledge and modeling of the noise 
distribution present in the reconstructed dynamic 
images (how noisy individual voxels are and how they 
correlate with other voxels), which can be extremely 
difficult and time-consuming to perform (4, 5). As a 
result, very commonly, presence of space-variant noise 

variance and inter-voxel correlations are simply 
ignored in kinetic parameter estimation.  
 In this review, we refer to the field encompassing 
techniques that attempt to address one or more of the 
aforementioned three issues as spatiotemporal 4D PET 
imaging. A wide range of methods have been 
proposed in the literature to this end, but they all agree 
in that they do not independently reconstruct 
individual dynamic frames, and these methods aim to 
outperform conventional dynamic PET (e.g. in terms 
of precision (noise) vs. accuracy (bias) trade-offs). 
 Relation with motion-compensation techniques: 
Here, we wish to note that while dynamic imaging and 
motion-compensated imaging methods overlap in a 
number of areas (since they both deal with varying 
activity distributions over time), yet the underlying 
bases of the two are different and need to be 
distinguished from one another; as such, this review 
deals with the former, while techniques to model and 
incorporate the latter have been reviewed by Rahmim 
et al. in (6). 

In this review, we have broadly classified and 
elaborated 4D PET imaging techniques as those that 
utilize temporal smoothing (Sec. 2), advanced 
temporal basis functions (Sec. 3), principal 
components transformation of the dynamic data (Sec. 
4), wavelet-based techniques (Sec. 5) and direct 
kinetic parameter estimation methods (Sec. 6). 
Furthermore, in Sec. 7, we have discussed an 
extension of this area to 5D PET imaging, involving 
dynamic, gated PET imaging.  
 
 

2. ITERATIVE TEMPORAL SMOOTHING 

2.1 A Common Approach 
A common approach in this direction has been to 
impose temporal voxel smoothing within the 
reconstruction task.  
This has been implemented via: 
(i) Inter-iteration temporal smoothing (7) in which 
high-frequency noise-filtering is performed after every 
iteration of the reconstruction algorithm, with the 
assumption of similarity between nearby frames. 
(ii) Maximum a posteriori probability (MAP) image 
reconstruction: in the standard framework, MAP-
based methods1 seek to minimize variations between 
spatial neighboring voxels. This approach can be 

                                                           
1 This is also referred to as the Bayesian method (originally 

derived from a simple application of Bayes' rule to image 
reconstruction). It is also, sometimes, referred to as penalized 
likelihood (PL) image reconstruction. 
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extended to a 4D-MAP algorithm (e.g. see (8)) in 
which one uses a summation of spatial and temporal 
potential functions, in order to encourage smoothing 
between neighboring voxels in both the spatial and 
temporal directions.  

Application of these approaches to dynamic PET (or 
SPECT) imaging has been shown to improve the noise 
performance of the reconstruction algorithms; 
nevertheless, they are ad hoc in that they assumes a 
priori that voxels in neighboring temporal frames have 
close values, and as such are bound to perform poorly 
for frames with fast dynamics. It must be noted that 
application of such methods in the context of motion-
compensation, as reviewed in (6), is better conditioned 
since one can incorporate the extracted motion 
information within the 4D smoothing task (9-11), and 
not simply assume that each voxel has nearly constant 
values in nearby frames. In the rest of this paper, we 
describe techniques that attempt to more accurately 
model the underlying dynamic mechanism within the 
4D image reconstruction task. 
 
2.2 Model-Based Temporal Smoothing 
Instead of encouraging temporally-adjacent voxels to 
have similar values, it makes more sense to encourage 
them to have intensity values along a kinetic fitted 
curve, as first investigated by Kadrmas and Gullberg 
(12) within the MAP framework. Thus, this approach 
effectively performs temporal smoothing of the 
intermediate images based on a parametric kinetic 
model.  The extreme, special case of this method, 
investigated by Reader et al. (13), would simply 
replace the intermediate image estimates by the 
corresponding intensities found by fitting at each 
iteration. In general, while this overall approach is 
more sound that the previous one (Sec.  2.1), it is not 
known to be convergent, and in fact, suffers from the 
potentially problem that a specific kinetic model 
applied to intermediate image intensities that have not 
yet converged does not necessarily perform well, and 
thus does not necessarily result in improved 
algorithmic performance. 
 

3. USE OF SMOOTH TEMPORAL BASIS FUNCTIONS 

As mentioned in Sec.  1.3, conventional dynamic PET 
imaging methods specify framing sequences within 
which the data are independently reconstructed. This 
can be thought of as using the simplest possible 
temporal basis function, namely the rectangular-pulse, 
in the reconstruction task such that the data acquired in 
a particular frame do not contribute at all to other 
temporal frames.  

An alternative approach would then aim at using 
other, smooth temporal basis functions in order to 
improve the quality of images by better relating data 
measured in different (especially adjacent) frames. Let 
us consider N temporal basis functions where )(tBk  
is used to denote the kth basis function (k=1…N). 
Then, the dynamic image set can be represented as: 
 

∑
=

=
N

k
kjkj tBwt

1
)()(λ

         
(1) 

where )(tjλ represents the image intensity at location  

j at time t, and jkw  is the coefficient of the kth basis 

function at location j. In this context, the 
reconstruction task becomes to estimate the 
coefficients of the basis functions. 
 Various related approaches have been studies in the 
literature, which we classify below in terms of how the 
basis functions are defined; these include (i) model-
driven, (ii) interpolating and (iii) data-driven 
definitions of basis functions, as we discuss next. 

 
3.1 Model-Driven Basis Functions 
It makes sense to consider basis functions extended 
temporally in accordance with some dynamic models 
describing how activities vary over time: 
 
3.1.1  Spectral analysis: Meikle et al. (14) used the 
approach in which the basis functions were modeled 
as exponential functions of varying widths convolved 
with the arterial input function q(t) as initially 
proposed in (15): 

)exp()()( ttqtB kk β−⊗=
  

  (2) 

 
In this technique, the β  values were fixed and chosen 
to cover the spectrum of expected kinetic behavior (for 
the particular biological imaging task). The authors 
then used the expectation-maximization (EM) 
technique to estimate the w coefficients (Eq. 1) of the 
basis functions from the data. This overall approach is 
somewhat specific to the imaging task of interest 
(range of β   values need to be determined in advance); 
however, it can be applied to a wide range of tracer 
studies since it does not assume a specific 
compartmental model. 
3.1.2 Model-based principal components as basis 
functions: In the context of the gamma camera (no 
reconstruction involved), Nijran and Barber (16) 
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proposed to generate a large range of theoretical 
curves from a particular tracer kinetic model, and then 
use principal components analysis (PCA) as applied to 
the covariance matrix between the generated curves to 
generate the most significant principal components, 
best representative of the data. This is because PCA is 
designed to generate vectors with maximized 
variations between them, such that only a small 
number of these principal components suffice for an 
adequate description of time-variations at any voxel. 
An extension of this approach, not explored in the 
literature to our knowledge, would be to use the 
generated principal components as temporal basis 
functions in the reconstruction tasks as applied to 
dynamic PET data. However, we emphasize again that 
the outlined approach would require advanced 
knowledge of the tracer kinetic model prior to the 
reconstruction tasks. Model-independent use of PCA 
is discussed in Sec.  4 

 
3.2 Interpolating Basis Functions 
In cases where the particular kinetic model is not 
known in advance, or is not accurately characterized, 
it is very desirable to consider temporal basis functions 
that are model-independent. Interpolating basis 
functions fit this criterion. The original motivation for 
their increasing use (17-20) in the reconstruction tasks 
can be seen by the following simple observation: the 
assumption that activity is constant within each 
dynamic frame, as used in conventional reconstruction 
techniques (see Sec.  1.3), is essentially equivalent to 
performing nearest-neighbor interpolation when 
considering a detected event; i.e. using a very simple 
rectangular pulse temporal basis function so that each 
event only contributes to the dynamic frame in which 
its detected.  

Alternatively, one may consider utilizing 
interpolating basis functions to better sample the 
temporal variation of activity in each voxel. In fact, 
such an approach is commonly employed in the spatial 
domain: (i) in image representation, where relatively 
smooth basis functions are used to more accurately 
represent spatial activity distribution compared to 
using voxels (e.g. see (21)), and (ii) in forward/back-
projection operations where more advanced 
interpolation techniques are utilized to improve images 
obtained compared to merely using nearest-neighbor 
interpolations. 

A similar logic applies to the temporal domain: it 
makes very good sense to consider more sophisticated 
temporal basis functions so as to move beyond the 

commonly used nearest-neighbor temporal 
interpolation scheme.  

 

 
 
Fig. 1: B-spline basis functions of increasing orders (image 
courtesy of (22)). 

 
In this regard, of very considerable potential and 

use have been the B-spline basis functions (22-24). 
These functions are very easily obtained by 
convolutions of the rectangular pulse function, as 
depicted in Fig. 1. Thus the 0th order B-spline function 
is the rectangular function itself, corresponding to the 
nearest-neighbor interpolation, while the 1st order 
function is the triangular function that is used for 
linear interpolation, and increasing orders correspond 
to higher degrees of interpolation. 
 
 

 
 
Fig. 2: Sampling a spatial or temporal domain via the cubic 
B-spline basis function (image courtesy of (22)). 
 
 
B-spline basis function has been shown to have very 
favorable properties including being compact (thus 
efficient to implement) while minimizing errors (i.e. 
they fast approach the ideal interpolating function with 
few increasing orders). In fact, nowadays it is the 3rd 
order cubic B-spline function that is most commonly 
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used to sample the spatial or temporal domain (Fig. 2) 
as it has very favorable efficiency/accuracy properties. 
This is in contrast with the ideal sinc function 
interpolator which is exact but does not have finite 
support and thus cannot be sampled efficiently. 
 In this context, a number of different reconstruction 
algorithms that aim to estimate the w coefficients in 
Eq. 1 have been proposed by a number of researchers, 
applied to histogrammed or list-mode  data  (18-20), 
and have been shown to result in kinetic parameter 
estimates with improved precision vs. accuracy trade-
offs. Furthermore, these reconstruction algorithms 
were designed and shown to be convergent.

 It is also worth noting that compared to histogram-
mode reconstruction, intuitively it makes better sense 
to directly utilize list-mode data in the reconstruction 
task. This is because it can be presumed that compared 
to events measured at the beginning of a frame m, the 
data measured towards the end of that particular frame 
contain more information about the basis function 
coefficient for the next frame (m+1), and that by 
performing histogramming, this additional information 
is lost. By contrast, direct list-mode reconstruction 
maintains this information in the reconstruction task. 
In any case, this presumed advantage remains to be 
demonstrated in practice. 

Furthermore, it must be noted that in the 
aforementioned works, the authors considered the use 
of non-uniform basis functions since early changes in 
concentration are typically much greater than those 
later in the study, and thus it makes sense to sample 
the temporal domain non-uniformly. Robust 
optimization of this non-uniform sampling remains to 
be fully studied, especially using analytic methods.  

 
3.3 Data-Driven Temporal Basis Functions 
In the aforementioned general approach, the shapes of 
the temporal basis functions are determined a priori 
independent of the particular study (though the non-
sampling scheme, if performed at all, is often 
dependent on the study). An alternative is to instead 
use methods that determine the shapes of the basis 
functions adaptively in a data-driven sense. Below we 
describe two such approaches in the literature: 
3.3.1 Singular value decomposition (SVD): 
Matthews et al. (25) used SVD as applied to dynamic 
PET images initially obtained using conventional 
reconstruction, in order to arrive at a set of useful 
temporal basis functions to be used in subsequent 4D 
image reconstruction (the EM formalism was used in 
this work to estimate the w coefficients in Eq. 1). The 
SVD technique has the advantage that in practice 
many of the singular values are insignificant when 

compared with the other dominant singular values, 
thus requiring only a subset to be used in the 
estimation task. A complication with this technique is 
that the resulting basis functions may contain negative 
values. However, this technique does not assume a 
kinetic model at all, and bases its results on a set of 
dynamic images initially obtained via standard 
reconstruction. 
3.3.2  Inter-reconstruction estimation: An 
alternative approach has been to perform 4D 
reconstruction whereby the temporal basis functions 
themselves are also estimated as part of the 
reconstruction process (26), with the potential 
advantage of avoiding any a priori selection of the 
temporal basis functions, and utilizing a data-driven 
approach to do so. 
This was implemented using an approach in which one 
first fixes the temporal basis functions (treating them 
as known), and estimates the corresponding w 
coefficients (see Eq. 1), and then alternates to an 
estimation algorithm in which the w coefficients are 
held as fixed and known, while the distributions of the 
temporal basis functions (at various temporal sampling 
points) are determined. A simultaneous updating 
procedure, not requiring to pre-specify the number of 
iterations inside each of the above two steps before 
switching to the other, was also outlines in (27) nearly 
halving the computation times. However, this 
approach may have some stability issues. 

Overall, the aforementioned general approach, 
though potentially very promising, has not been shown 
to be a convergent algorithm. Furthermore it remains 
to be studied whether the proposed data-driven 
determination of basis functions outperforms the 
previous reconstruction algorithms outlined in Sec. 
 3.2. 
 

4. PRINCIPAL COMPONENTS TRANSFORMATION 

OF THE DYNAMIC DATA 

An alternative approach consists of performing 
principal components analysis (PCA), or 
transformation, on the dynamic data along the 
temporal direction. This is also sometimes referred to 
as the Karhunen-Loève (KL) transform2. PCA has 
been a popular technique for many years in various 

                                                           
2 The term KL, however, is best applied to cases when the true 
ensemble covariance (and not the estimated sample covariance as is 
done in PCA) is known. Thus, in the experimental task of PET 
imaging where the object distribution is not known a priori, it is best 
to use the term PCA. 
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fields, particularly in geosciences and remote sensing, 
used to decorrelate multispectral images as used in 
compression, denoising and deblurring.  

In the context of dynamic imaging, the general idea 
is that application of PCA to a time-series of images 
allows their decomposition into a number of factor 
images which are uncorrelated (i.e. with maximized 
variations between them). Since in practice only few 
of the factor images are sufficient to adequately 
describe the underlying dynamics, removal of the 
negligible factors renders a natural noise reduction 
technique. Such a denoising approach has been 
applied to nuclear medicine dynamic imaging in the 
past (e.g. model-based approach of (16) as reviewed in 
Sec. 3.1.2, and model-independent work of Kao et al. 
(28)). It must be noted that in the context of TAC 
extraction and noise-reduction, factor analysis 
techniques other than PCA have also been explored; 
e.g. see the works by El-Fakhri et al. (29) and Su et al. 
(30) for brief reviews and some novel techniques. 

In the context of 4D image reconstruction, Wernick 
et al. (31) have made the observation that dynamic 
image sets in their standard forms are correlated in the 
temporal direction, and thus require 4D reconstruction 
algorithms that model and incorporate such temporal 
correlations (various approaches to this were discussed 
in previous sections). By contrast, the authors have 
proposed to first transform the standard dynamic 
datasets using PCA, and have shown that, with some 
simplifying assumptions, the resulting dynamic data 
sets become nearly uncorrelated and thus can be 
reconstructed independently, resulting in fast yet 
accurate reconstructions. Such an approach to 4D 
image reconstruction remains to be further 
investigated and expanded upon in the literature. 

We conclude this section by noting that even though 
the aforementioned approach is originally designed for 
imaging of motion-free objects, it has been shown to 
work very well in reconstructing cardiac image 
sequences as well (32), and this is hypothesized (31) 
to be the case because the principal components model 
is able to capture the motion information in the form 
of motion-induced temporal fluctuations of the signal. 
 

5. WAVELET-BASED TECHNIQUES 

Wavelets are powerful mathematical tools for analysis 
of finite, non-periodic, and/or non-stationary signals. 
Wavelet transforms (WT) differ from traditional 
Fourier transforms by their inherent ability of 
localizing information in the time-frequency domain. 
The wavelets are scaled and translated copies (known 
as "daughter wavelets") of a finite-length or fast-
decaying oscillating waveform (known as the "mother 

wavelet"). As an example, the first known and also the 
simplest possible wavelet is the Haar wavelet with its 
mother wavelet function ( )tψ described as 

1 0 1/ 2,
( ) 1 1/ 2 1,

0 otherwise.

t
t tψ

≤ <⎧
⎪= − ≤ <⎨
⎪
⎩

 

Fig. 3 shows the mother wavelet of Haar wavelet with 
some of its daughter wavelets.  
 

 
 
Fig. 3: Haar wavelet: Mother wavelet and some daughter 
wavelets. 
 
Wavelets and multiscale methods have been widely 
applied in dynamic PET imaging, both for post-
smoothing and in reconstruction. As we review next, 
in quantification analysis, multiscale denoising has 
been applied to reconstructed dynamic images at the 
voxel- or ROI-level. Wavelets have also been 
incorporated in emission tomographic reconstruction 
of individual image frames, and in spatiotemporal 
reconstruction of dynamic PET images.  
 
5.1 Wavelet post-processing in dynamic PET 

In the context of dynamic imaging, the one-
dimensional wavelet transform has been applied in 
designing a time-varying filter to improve the signal-
to-noise ratio in PET kinetic curves (33). A two-
dimensional wavelet denoising algorithm was applied 
by Lin et al. (34, 35) to each short-axis image plane 
(of each individual image) independently in order to 
remove noise in the spatial domain, followed by 
application of one-dimensional wavelet denoising to 
the TAC for each ROI so as to also remove noise in 
the temporal domain. 
 Turkheimer et al. (36, 37) performed kinetic 
modeling in the wavelet domain. They applied the 
dyadic wavelet transform (DWT) to each dynamic 
frame to produce the correspondent wavelet transform. 
Kinetic modeling was then applied to wavelet 
coefficients of the time-curves. The wavelet 
coefficients were thresholded to reduce the level of 
noise and the remaining ones were subsequently 
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inverse wavelet transformed to produce the desired 
parametric images. 
 
 
5.2 Wavelets in reconstruction tasks 

Before their specific application in emission 
tomographic reconstruction, wavelets were 
incorporated in solving linear inverse problems, for 
example, with wavelet-vaguelette (38) and vaguelette-
wavelet (39) decompositions followed by 
thresholding.  
 Kolaczyk (40) applied the aforementioned wavelet-
vaguelette decomposition as well as wavelet shrinkage 
(WS) (41) in tomographic image reconstruction 
(single frame). A representation of the vaguelette 
coefficients corresponding to the Radon transform was 
developed. The representation led to an algorithm 
based on using the analytic FBP algorithm in a multi-
resolution fashion to compute the vaguelette 
coefficients from the data. WS was applied as a 
method of regularization to the vaguelette coefficients 
before the inverse wavelet transform was performed to 
recover the image. A set of thresholds was used in 
WS, removing most of those coefficients 
corresponding to noise, while retaining most 
corresponding to the signal. 
 Multiscale analysis and regularization was also 
applied in statistical restoration and reconstruction 
(42-45).  Nowak and Kolaczyk (44) developed a 
statistical multiscale framework for Poisson 
distributed data. The foundation of their Bayesian 
reconstruction framework was the multiscale 
factorization of the Poisson likelihood function. 
Conjugate priors were used in the multiscale 
parameter space in order to constrain how the intensity 
function was re-parameterized at each location-scale. 
The EM algorithm was applied in the MAP estimation 
problem, having a closed-form M-step. To avoid 
blockiness resulting from multi-resolution models 
formulated on a quadtree structure (a tree data 
structure in which each internal node has up to four 
children) (44), Frese et al. (45) proposed a wavelet 
graph prior model that exploited dependencies of 
wavelet coefficients across scales. The more general 
structure produces smoother estimates even for a Haar 
wavelet basis.  
 
5.3 Wavelet in dynamic PET reconstruction 

Although noticeable research has been performed in 
using tailored temporal basis functions for 
representing the time activity curves in dynamic PET 
reconstruction (see Sec.  3), Verhaeghe et al. (46) 
pioneered the research in using temporal wavelet basis 

functions. The L1-norm of the spatiotemporal wavelet 
coefficients of images served as the regularization 
term in the cost function to be minimized. Wavelets 
that were separable in space and time were utilized, 
with so-called B-spline wavelets in the spatial domain 
and E-spline wavelets in the temporal domain.  The 
introduction of E-spline wavelets in the temporal 
domain was based on the concept that the activity 
distribution in the body is ruled by a system of 
differential equations involving compartmental 
models.  

In a couple of dynamic PET simulations, one with a 
slice of the NCAT cardiac phantom and the other with 
a slice of the Zubal brain phantom, the regional signal-
to-noise ratios (SNRs) from reconstructed noisy 
images were shown to be higher when temporal E-
spline wavelets were applied compared to using 
temporal B-spline wavelets. The TACs extracted from 
a pixel in the left ventricle with wavelet regularization 
was shown to be closer to the true TAC. The 
spatiotemporal regularization reconstructed images 
were also shown to be less noisy than those with no 
regularization or with temporal regularization only 
(Fig. 4). 

 

 
 
Fig. 4: Reconstructed brain phantom slices. Middle row are 
temporal slices. Time and space locations are indicated by 
the white bars. Upper and lower spatial slices correspond 
with the upper (early time) and lower (late time) bars in the 
temporal slice, respectively. Results in the third column give 
a good compromise between spatial and temporal 
regularization (images courtesy of (46)). 
 
 



D
ow

nl
oa

de
d 

fr
om

 h
ttp

://
jo

ur
na

ls
.tu

m
s.

ac
.ir

/ 
on

 T
ue

sd
ay

, A
ug

us
t 1

4,
 2

01
2

4D PET: Beyond Conventional Dynamic PET Imaging   
Rahmim et al. 

 

 

Ir
an

 J
 N

uc
l M

ed
 2

00
8,

 V
ol

 1
6,

 N
o 

1 
(S

er
ia

l N
o 

29
) 

 

8 
 

6. DIRECT KINETIC PARAMETER ESTIMATION 

 
An alternative approach to conventional dynamic PET 
imaging has been to directly estimate kinetic 
parameters from the measured data, instead of 
generating reconstructed PET images from which the 
kinetic parameters are estimated, as depicted in Fig. 5. 
 

 
 
Fig. 5: Direct kinetic parameter estimation does not perform 
reconstruction of the individual frames, and instead 
estimates the parametric image collectively and directly 
from the data. 
 
Broadly, there have been two general approaches in 
this context, the first one designed to improve speed 
and the second one to improve accuracy, as we 
describe next: 
 
6.1 Generation of Parametric Sinograms 

A technique explored in the past consisted of creating 
a 'parametric sinogram' from multiple dynamic 
sinograms by performing fitting (given a particular 
kinetic model) in the projection-space (and not the 
usual image-space); this was then followed by a single 
reconstruction. This approach has the benefit of 
reducing the computational burden by ~1 order of 
magnitude, and has been investigated for different 
parameter estimation tasks by a number of different 
authors (47-50). A limitation of this technique is that it 
is only applicable to models that can be expressed 
linearly in image-space such that they can be extended 
to the projection-space and thus be applied directly to 
the sinogram data. An additional issue is that while 
EM-type reconstruction algorithms assume that the 
data are Poisson-distributed, the data in the parametric 
sinograms may no longer be as such (e.g. this is the 
case when one extracts the Patlak slope from dynamic 
sinograms; slope of a fit to Poisson-distributed data is 
not Poisson-distributed itself).  
 
6.2 Direct Parametric Estimation from Non-
Combined Dynamic Data  

 With regards to the three limitations of conventional 
dynamic PET imaging outlined in Sec.  1.3, while 
many techniques discussed in this review attempt to 

address the first two by improving noise vs. bias 
performance, none address the third issue; i.e. the 
reconstructed images still contain very complex noise 
distributions that need to be modeled for accurate 
tracer kinetic modeling.  Appropriate direct 
estimations of kinetic parameters from the dynamic 
data set can much simplify this task since such 
methods work directly with the measured data, which 
are very well known to follow the simple independent 
Poisson distribution. This approach was originally 
outlined in 1985 by Carson and Lange (51) in the very 
context of the EM algorithm. It sought to estimate 
kinetic parameters by maximizing the Poisson log-
likelihood of obtaining the measured dynamic data. 
 However, this novel general outline was not 
actually implemented for a specific task at the time, 
and only in later years was this problem revisited by a 
number of different groups, as we review next. Just as 
there are two general categories of kinetic modeling 
techniques, namely ROI-based and voxel-based, we 
divide the direct estimation techniques in the literature 
into these two general categories: 
 
6.2.1 ROI-based technique: A number of techniques 
have been proposed that aim to directly estimate the 
kinetic parameters at the ROI level from the PET (or 
SPECT) dynamic data. Vanzi et al. (52) investigated a 
method to extract renal kinetic parameters for a simple 
model with one uptake constant for each kidney. 
Huesman et al. (53) and Zeng et al. (54) developed 
methods to extract kinetic parameters in myocardial 
imaging using one-compartment and two-compartment 
methods, respectively3.  

The aforementioned methods first extracted the 
boundary information for the ROIs from standard 
reconstructions, followed by application of direct ROI 
parameter estimation form the data. Alternatively, 
Chiao et al. (55) developed techniques that jointly 
estimated, within a single reconstruction task applied 
to cardiac dynamic emission computed tomography 
(ECT), both the kinetic parameter estimates as well as 
the boundary information. An approach was also 
developed by the same authors (56) to use boundary 
side information (obtainable from high resolution MRI 
and CT images) within a similar direct reconstruction 
scheme. 
 

                                                           
3 These two works were also designed to better address 

the existing problem in standard reconstructions for dynamic 
SPECT imaging, in which the rotation of the detectors while 
the distribution of the radiopharmaceutical changes over 
time result in inconsistent projections 
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6.2.2 Voxel-based technique: Kinetic parameter 
estimation at the voxel level (i.e. generation of 
parametric images) was achieved directly from 
dynamic PET data by Kamasak et al. (57). The method 
was implemented for a specific compartmental model: 
the reversible two-tissue compartmental model with 
four kinetic parameters (k1, k2, k3, k4). Comparison of 
the method with standard techniques is shown in Fig. 
6 for a simulated study, and exhibits clear 
improvements. 
 

 
 
Fig. 6: Parametric images of k1, k2, k3  and  k4 in (a) the 
original simulation, and reconstructed using standard 
dynamic reconstruction followed by (b) pixel-wise weighted 
least squares (PWLS) fitting, (c) PWLS with spatial 
regularization (PWLSR), and finally (d) the proposed direct 
parametric iterative coordinate descent (PICD) algorithm 
(images courtesy of (57)). 
 

  Majority of direct parametric reconstruction 
methods in the past have utilized nonlinear kinetic 
models to estimate individual kinetic parameters. On 
the other hand, a number of graphical modeling 
methods have been developed that yield simple 
linear/visual techniques for estimation/evaluation of 
kinetic properties of various PET tracers (e.g. see (58) 
for a review). The Patlak linear model for irreversible 
tracers was recently included in a direct parametric 
estimation task by Wang et al. (59), wherein the 
authors expanded the objective function for the 
reconstruction task to directly relate the Patlak 
parameters across the image to measured data, and 
used a preconditioned conjugate gradient algorithm to 
find the optimum solution.  

Within a similar Patlak estimation task, Tang et al. 
(60) alternatively extended the system matrix 
formulation and derived a direct 4D EM  parametric 
reconstruction algorithm, having had the advantages of 

being both accurate in its formulation and being a 
closed-form reconstruction algorithm. 
 In a later work, Wang and Qi (61) used the method 
of paraboloidal surrogate functions (62) (which 
approximates the Poisson log-likelihood function by 
local parabolas thus considerably simplifying the 
optimization task) to derive a very feasible direct 
estimation technique. The method was shown to 
effectively reduce to two steps at each iteration; 

defining 
1ˆ +n

jmλ
 
as the (n+1)th updated image value at 

voxel j and frame m, and )( n
jκλ  as the calculated 

image intensity given the present estimated kinetic 
parameters (summarized by the vector n

jκ  of kinetic 

parameters at voxel j), these two steps are: 
(i) Image update step: 

n
jm

n
jmn

j
n
jm w

g
+=+ )(ˆ 1 κλλ

 

 and (ii) kinetic fitting 

( ){ }∑ ++ −−=
211 ˆ)(maxarg n

jmj
n
jm

n
j w

j

λκλκ
κ

 
where n

jmg  denotes the gradient of the penalized log-

likelihood at pixel j in frame m at the nth iteration, and 
n
jmw  is a weighting factor determined by the specific 

algorithm. The developed algorithm has the great 
advantage that it is fairly straight-forward to 
implement, and that the second part resembles the 
least-squares optimization task, as utilized by a wide 
variety of kinetic modeling tasks, except that the 
weights are now accurately determined and not chosen 
on an ad hoc basis. 
 It is worth noting that the major limitation of these 
techniques is that the kinetic model has to be known in 
advance prior to reconstruction and to apply well to all 
areas in the image, the latter not being exactly the case 
in many imaging scenarios, thus potentially 
necessitating approximation schemes.  
 We conclude this section by noting that the methods 
discussed in sections  3.1.1 and  3.1.2 can also be 
considered as direct estimation tasks, since the smooth 
temporal basis function were based on underlying 
biological models, and the extracted coefficients 
conveyed how much each biological factor contributed 
to the data. This was also the case for the SVD method 
discussed in  3.3.1 which was argued by the authors to 
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distinguish the separate biological contributions to the 
data. Nevertheless, since these methods all involved 
the use of smooth temporal basis functions, we 
discussed them in Sec.  3. 
 
 

7. 5D PET IMAGING 

The aforementioned techniques can also be used for 
the natural extension of 4D PET imaging to 5D PET 
imaging, by including an additional dimension coming 
from gating (cardiac or respiratory). In present 
applications, dynamic and gated imaging is rarely 
performed since standard independent reconstruction 
of the individual dynamic, gated PET data would 
result in considerably noisy images. However, this 
could be of interest in a number of areas. For instance, 
in dynamic-cardiac imaging, 13N-labeled ammonia 
(13NH3) can be used for the measurement of 
myocardial blood flow which makes it possible to 
measure blood flow at the level of micro-circulation. 
Addition of cardiac gating to dynamic imaging has the 
advantage of reducing cardiac motion artifacts.  

Verhaeghe et al. (63) have taken an important step 
in this direction by using B-spline temporal basis 
functions (see Sec.  3.2) to represent both the temporal 
and gate dimensions. As shown in Fig. 7, standard 
reconstructions result in noisy images, which upon 
post-smoothing result in loss of detail. By contrast, 
advanced 5D imaging using temporal basis functions 
results in improved noise performance while 
maintaining sharply defined images.  

 

 
 
Fig. 7: (a) Short axis view of a simulated phantom, and the 
resulting images obtained via standard reconstruction (b) 
without and (c) with post-smoothing, and using (d) first-
order and (e) third-order (i.e. cubic) B-spline temporal basis 
functions in the temporal and gate dimensions (images 
courtesy of (63)). 

 
It must however be noted that, as mentioned in Sec. 
 1.3, dynamic imaging and motion-compensated 
imaging (e.g. in cardiac) involve different 
fundamentals. Therefore, even though a number of 
techniques discussed in this work have also been in the 
past used for motion compensated image 
reconstruction (e.g. temporal smoothing, use of 
temporal basis functions, PCA), motion-compensation 
is best treated distinctly and with more direct 
consideration of motion itself, as reviewed in (6). 
 
 

8. CONCLUSION 

The present work has attempted to summarize 
important themes in the emerging field of 4D PET 
imaging, the objective being to address existing issues 
with conventional dynamic PET imaging. The issues 
arising from independent reconstructions of acquired 
dynamic PET frames were summarized as the 
generation of noisy images, biased images (as the 
activity within a frame is conventionally assumed 
constant) and the considerable complexity of modeling 
the generated noise in the images in the kinetic 
modeling step.  
 A wide range of techniques designed to address 
some or all of these issues were discussed,  including 
techniques that utilize iterative temporal smoothing, 
smooth temporal basis functions, principal 
components transformation of the dynamic data, 
wavelet-based techniques as well as direct kinetic 
parameter estimation methods.  
 Finally, it is worth emphasizing that while indirect 
methods still face the very difficult task of estimating 
noise correlations in reconstructed images for kinetic 
modeling purposes (often neglected for simplicity), the 
latter category which directly estimate kinetic 
parameters from the measured data are able to 
naturally address this difficulty since they accurately 
model the known uncorrelated Poisson noise 
distribution in the PET data.  
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