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Introduction: In this study, we aimed to evaluate the possibility of assessing 
cardiac abnormality using the left ventricular anatomical axis (LVAA) obtained 
from short-axis views of myocardial perfusion imaging (MPI). 
Methods: To obtain LVAA, an ellipse was drawn around the outer wall of SPECT 
images from XCAT phantoms and patients. The best line was then drawn from 
the center of all the ellipses in the short-axis views called LVAA. Then, we defined 
two angles based on LVAA including Ɵ which is the angle created by LVAA with 
the x-axis, and Φ which is the angle created by LVAA with the z-axis 
Results: In this study, 94 cases were enrolled including 48 males (51%) and 46 
females (49%) with a mean age of 65.65±10.04. According to the results, there 
was a significant difference between the two obtained angles and the result of 
the scan (p<0.05). The ideal cut-off of Ɵ for an abnormal scan was 91.79 (AUC, 
0.93; p=0.001) with the sensitivity of 98% and specificity of 80%. 
Conclusion: It can be concluded that LVAA as a quantitative factor is significantly 
different between normal and abnormal MPS and can be used for the evaluation 
of MPI. 
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INTRODUCTION 

The function of the left ventricle involves a 
complex interaction between different groups of 
muscle fibers oriented in various directions, 
including longitudinally, obliquely, and 
circumferentially. This results in a combination of 
the ventricle shortening in a circumferential 
manner, thickening of the heart wall in a radial 
direction, and shortening along its long axis [1, 2]. 
Research has shown that the displacement of the 
atrio-ventricular plane along the long axis is a 
significant factor in the pumping action of the left 
ventricle in healthy individuals as well as in those 
with diseased hearts. Furthermore, the long axis 
function influences myocardial function in unique 
ways, such as playing a role in left ventricular 
diastolic filling and facilitating the filling of the 
atria from the major veins. Dysfunction along the 
long axis has been observed as an early indicator 
of various pathological conditions [3]. 
Echocardiography, which assesses the 
longitudinal function, has demonstrated its ability 
to provide valuable prognostic information for a 
wide range of heart conditions [3]. Despite these 
distinctive characteristics, the assessment and 
reporting of long axis function are not commonly 
performed even during clinical Cardiovascular 
Magnetic Resonance (CMR) evaluations [4]. 
Myocardial perfusion imaging (MPI) [5] is a 
cardiovascular imaging method performed to 
diagnose coronary artery disease (CAD) in two 
phases following exercise and rest for evaluating 
the quantity and quality of blood supply to the 
myocardium at different angles and levels of the 
heart [6, 7]. Clinically, physicians have studied left 
ventricular SPECT images using various methods 
such as heart segment and converting it into a 
variable mesh model with parameters such as 
ejection fraction, stroke volume, wall thickness, 
and wall motion [8, 9]. These parameters are very 
useful in the diagnosis of heart attack, heart 
failure, and evaluation of the amount of living and 
surviving heart muscle [10, 11].  
Unfortunately, one of the problems with SPECT 
images is that they are noisy and also have a low 
resolution  [12, 13]. Therefore, it is difficult to 
extract quantitative measures [14, 15]. We run 
this novel project to develop basic principles 
based upon cardiac imaging methods, which has 
accomplished widespread clinical acceptance as a 
standard of care for patients with coronary artery 
disease. Hopefully, it might be to use as a 
surrogate in detection of cardiovascular problems 
especially ischemic disease in future studies. 
Furthermore, adding a quantitative measurement 
that can extract more information from these 

images will help the physician to be able to 
diagnose the disease more accurately. In this 
study, we aimed to evaluate the possibility of 
assessing the cardiac abnormality using the left 
ventricular anatomical axis (LVAA) obtained from 
short-axis views of MPI. 

METHODS 

Patients 
In this retrospective study, 94 patients who 
underwent MPI from July 2020 to January 2021 
were enrolled. The clinical history of patients was 
collected from medical documents. This was a 
registry-based retrospective study approved by 
our Institution Review Board. 

Myocardial perfusion SPECT (MPS) 
MPS was performed in one-day stress and rest 
phases. Following intravenous injection of 740 
MBq [99mTc]Tc-MIBI, the image acquisition was 
performed after at least one hour for rest and at 
least 30 minutes for exercise or pharmacologic 
stress. The images were acquired from the right 
anterior oblique (RAO) to the left posterior 
oblique (LPO) in 32 projection (20 
second/projection) and 64×64 matrix using a 
dual-head gamma camera (Philips (ADAC) Vertex 
Plus) equipped with low energy-high resolution 
collimator. The energy window was set at 
140±20%. Image reconstruction was performed 
using the ordered subset expectation 
maximization (OSEM) with the combination of 
four iterations and four subsets. 
Two nuclear medicine physicians reviewed the 
images. Based on interpretation, the images were 
classified into normal scans and abnormal scans 
including both infarcted and ischemic 
myocardium. 

Phantom study 
Since SPECT images are noisy, we required 
laboratory images, so the XCAT Phantom was 
used. 
The integration of the four-dimensional XCAT 
phantom with the SIMIND Monte Carlo program 
provides a robust framework for simulating 
scintillation camera imaging and Single Photon 
Emission Computed Tomography (SPECT). The 
XCAT phantom, a sophisticated 4-D extended 
cardiac-torso model, offers a detailed 
representation of human anatomy and 
physiology. Its flexibility allows for the simulation 
of diverse physiological conditions, making it a 
valuable tool in nuclear medicine research. In this 
study, the XCAT phantom was employed to 
generate realistic laboratory images due to the 
inherent noise in SPECT images [16]. The phantom 
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accommodates variations in gender, weight, 
height, body elongation, chest dimensions, and 
the presence or absence of breasts, ensuring a 
broad applicability to different patient 
demographics. The use of four phantoms at eight 
different time points throughout the cardiac cycle 
allowed for a comprehensive representation, and 
the average was considered for subsequent 
analysis[16]. The SIMIND Monte Carlo program 
served as a reliable tool for simulating scintillation 

camera imaging and SPECT [17]. This program 
accounts for the physical and geometrical 
characteristics of the camera system, making it a 
comprehensive forward projector in an iterative 
reconstruction algorithm. Specifically, SIMIND 
utilized a Maximum Likelihood Expectation 
Maximization (ML-EM) and Ordered Subsets 
Expectation Maximization (OSEM) reconstruction 
algorithm to estimate the source distribution and 
image data (Figure 1) [18]. 

 

 
Figure 1. The short-axis view of cardiac of XCAT phantom (A) and its reconstructed SPECT (B). Estimated ellipse of heart in short-axis 
view (red dots are the center of the ellipse) (C) and estimated position of the left ventricular anatomical axis (LVAA) in the long axis 
view (D) 

In the simulation process, the XCAT phantoms 
were used as inputs to the SIMIND code. The 
parameters specified in the SIMIND software 
included an energy of 140.5 Kev for photons 
(matching technetium's energy), 32 shots, and 
256 × 256 × 128 matrices for both activity and 
attenuation maps. The cut-off energy for tracking 
photons was set at half of the initial photon 
energy (70 Kev). The output from SIMIND was 
then converted into SPECT images using the 
OSEM reconstruction algorithm [9]. Notably, the 
XCAT phantom was configured to simulate SPECT 
images with different activity distributions in 
various organs. It can accurately simulate cardiac 
activity, with relatively high and equal activity in 
all four chambers of the heart, along with 
abdominal activity, including the liver, gall 
bladder, esophagus, spleen, and specific activities 
of Tc-99m was set for male and female phantoms. 
The XCAT phantom could simulate 3D distribution 
of attenuation coefficients and emission 
radionuclide activity, offering a comprehensive 
approach to imaging simulation. [17, 18]. The 
synergistic use of the XCAT phantom and the 
SIMIND Monte Carlo program in this study 
allowed for the creation of realistic and diverse 

SPECT images. This methodology enhances the 
understanding of imaging processes, facilitating 
advancements in nuclear medicine research and 
contributing to the refinement of imaging 
techniques. 

Image segmentation 
Because this article was supposed to enclose the 
images of the myocardial short-axis views in an 
ellipse, these images must be segmented to find 
the edges of the images, so their segmentation is 
necessary. We used the images of the stress phase 
for the segmentation and calculation of LVAA. 
Sub-Markov Random Walk (SMRW) [19] was 
applied for image segmentation. In this method, 
the user specifies the starting points of each 
image area that corresponds to a separate object 
in the image. The user labels each starting point. 
The SMRW marks all unlabeled points, then, 
calculates the probability of reaching each 
marked point from the starting point and finally, 
finds the highest probability. For this purpose, a 
vector is formed from which each element 
indicates the probability of reaching each of the 
areas separated by the user from the starting 
point to the label [20]. Finally, by separating the 
area that has the activity in heart, it creates the 



Left ventricular axis from cardiac SPECT images 

 Salahshourinejad F. et al. 
 

 

105 

 

image needed for the next part, which is ellipse 
estimation. Therefore, an accurate ellipse 
estimation method is very critical for the 
estimation of the desired axis. Therefore, 
segmented images must be enclosed in an ellipse 
to obtain their centers [19]. 

Ellipse estimation method 
The method of estimating the ellipse is to 
calculate the diagonal distance regression, in 
which the geometric error is minimized. The 
orthogonal distance is the distance between the 
data points and the ellipse. This is a cost function 
that occurs when independent Gaussian noise is 
assumed to be a data point and applied to the 
maximum probability estimate [21]. The cost 
function is based on the number of data points. 
For clarification, if the data point (m1, m2) is 
incorrect in the ellipse, this function should match 
Eq.1. 

𝑎𝑥2 + 𝑏𝑥𝑣 + 𝑐𝑣2 + 𝑑𝑥 + 𝑒𝑣 + 𝑓 = 0               (1) 

This equation is a general conic equation and 
depending on whether the discriminant ∆= b2 −
4ac  is negative, zero, or positive, it represents 
ellipses, parabolas, and hyperbolas, respectively. 
As a result, for a data point to satisfy an ellipse 
equation, the ellipse parameters must also satisfy 
the ancillary constraint 𝑏2 − 4𝑎𝑐 < 0 . 

Assume θ = [a, b, s, d, e, f]T is the vector of 

parameters, x = [m1, m2]Tis the vector of 

variables and u(x) = [m1
2, m1m2, m2

2, m1, m2, 1]T 
is the vector of transformed data points. The 

equation of a conic can then be written as θTu(x). 
The algebraic least-squares method could be used 
to determine how much a data point fails to 
satisfy the ellipse Eq.2. 

∥𝜃𝑇𝑢(𝑥)∥2

∥𝜃∥2 =
𝜃𝑇𝑢(𝑥)𝑢(𝑥)𝑇𝜃

∥𝜃∥2                                          (2) 

Where 〖∥θ∥〗^2=〖(θ_1^2+⋯+θ_6^2)〗^2. As 

a result of this, the algebraic least squares (ALS) 
cost function is as follows: 

𝐽𝐴𝐿𝑆(𝜃; 𝑥1, 𝑥2, … , 𝑥𝑁) =
∑ 𝜃𝑇𝑢(𝑥𝑛)𝑢(𝑥𝑛)𝑇𝜃𝑁

𝑛=1

∥𝜃∥2 =

θTMθ

θTθ
                                                                           (3) 

Where M = ∑ θTu(xn)u(xn)TθN
n=1 . Because it is 

so simple to minimize, the algebraic least-squares 
cost function is extremely common. This formula 
is written in the form of the Riley equation. The 
eigenvector associated with the least eigenvalue 

is the parameter vector θ̂ALS that minimizes the 
algebraic cost function. To find the estimate, all 
that is required is an eigendecomposition. This is 

a simple and effective method to use. The 
ancillary constraint 𝑏2 − 4𝑎𝑐 < 0, on the other 
hand, is not applied in the procedure. This means 

that instead of an ellipse, the estimate θ̂ALS could 
be a hyperbola or parabola presented a change to 
the algebraic cost function that ensured an 
elliptical fit to address this constraint. It was called 
the Direct Ellipse Fit (DIR) [22, 23]. In this step, the 
edge points of the eight images of the previous 
step are found. These are the input points of the 
ellipse estimation algorithm. Using these points, 
the circumferential ellipse is estimated. Then the 
center of the ellipse is found using Eq.4. The 
output sample of the ellipse is estimated and their 
centers are shown in Figure 1C. 

𝑥 =
𝑐𝑑−𝑏𝑒

𝑏2−𝑎𝑐
      ,   𝑦 =

𝑎𝑒−𝑏𝑑

𝑏2−𝑎𝑐
                                     (4) 

3D axis estimation using cardiac centers 
In this section, the points of the obtained elliptical 
centers were the input. The variance-covariance 
matrix of those points was obtained. This was the 
singular value decomposition (SVD) input matrix. 
Using the SVD function, the best line passing 
through these points was estimated [24]. 
SVD creates orthonormal bases for the null-space 
and range of a matrix explicitly. The columns of U 
corresponding to the non-zero elements of D 
cover the range. Columns of V corresponding to 
zero elements of D span the null space. SVD 
allows a rank decision (rank (A)) is the largest r s.t. 
Dr > 0). There is m - r singular vector on the left 
that corresponds to the singular value 0. There is 
n - r singular vectors on the right corresponding to 
the singular value 0. 
SVD (x) returns the numeric unit matrix U and V 
with columns containing single vectors and a 
diagonal matrix D containing single values. The 
matrix satisfies the condition A = U × D × V`, where 
V` is the hermetic transposition (different 
conjugate of transposition) of V(28). SVD does not 
compute single symbolic vectors; therefore, the 
input matrix X must be converted to floating-
point numbers. The proper direction of the line is 
proportional to U (: , 1). By converting U to the 
polar coordinates, the output is the angles Ɵ and 
Φ (𝑅2coefficient of determination = (variance) / 
(total variance)) [25]. At this point, the output Ɵ 
is a spatial angle created by the three-
dimensional line estimated with the x-axis. To 
compare the results of the algorithm, all steps of 
the algorithm had been performed on XCAT 
phantom images. Figure 2 shows an example of 
image segmentation and achievement of LVAA 
with angles for abnormal scan and normal scan.
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Figure 2. An example of image segmentation and achievement of the left ventricular anatomical axis (LVAA) with angles for an 
abnormal scan (A) and a normal scan (B) 

Classification 
Support vector machine (SVM) [26] is a method of 
observational classification based on statistics. 
This classifier's main purpose is to determine the 
meta-page that maximizes the margin between 
the two classes as a decision level. SVM classifier 
separates two classes by a hyperplane within the 
N-dimensional space. The discriminant function 
of the SVM classifier is defined as 

𝑓(𝒀𝑗) = 𝑠𝑖𝑔𝑛(𝑾𝑇 . 𝒀𝑗 + 𝑏)                                   (5) 

Where b could be consistent and 𝐖 maybe a 
vector with real values. In case, if data cannot be 
separated linearly, discriminant function is 
defined as 

𝑓(𝒀𝑗) = 𝑠𝑖𝑔𝑛(𝑾𝑇 . 𝛷(𝒀𝑗) + 𝑏)                            (6) 

Where Φ(𝐘j) is a function to map the 𝐘j into a 

higher dimensional feature space. Ordinarily 
nonlinearly distinguishable information is 
mapped into higher dimensional including space 
utilizing bit capacities [27]. Hence, discriminant 
work can be altered as takes after: 

𝑓(𝐘𝑗) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑖 𝐾(𝐘𝑗 . 𝐘𝑖) + 𝑏)                      (7) 

Where 𝐘𝑖  and 𝛼𝑖  are ith support vector and its  
corresponding weight respectively. K(.,.) is the 
kernel function. One of the kernels that are 
commonly used in practical applications is a 
Radial Basis Function (RBF) is given as in Eq.6. 

𝐾(𝐘𝑗 . 𝐘𝑖) = exp (−∥ 𝐘𝑗 − 𝐘𝑖 ∥)2                          (8) 

For classification, we considered 70% of cases as 
train and 20% as the test with 100 times repeat. 
Three models were evaluated to predict the result 
of the scan including the results of both angles as 
model 1, the results of Ɵ as model 2, and the 
results of Φ as model 3. In the end, precision, 
recall, and receiver operating characteristic (ROC) 
curves for the determination of the area under 
the curve (AUC) were obtained as output. 

Statistical analysis 
IBM SPSS Statistics for Windows, version 21 (IBM 
Corp., Armonk, N.Y., USA) was used for data 
analysis. Continuous variables were presented as 
mean ± SD, and categorical variables were 
presented as numbers and percentages. In 
addition, the T-test was used to the assessment of 
the difference between groups. Finally, ROC curve 
analysis was used to determine the cut-off value 
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and AUC. P-values less than 0.05 were considered 
statistically significant. 

RESULTS 

Phantom study results 
Table 1 shows the results of the algorithm using 
the XCAT phantom and its SPECT simulation 
images in an average of eight times. The results 
indicated that there was no significant difference 
between cardiac Φ and Ɵ of phantom and 

reconstructed SPECT images obtained from the 
phantom (p>0.05).  

Patient study 
The results of this algorithm had also been 
tested on real MPS data in 94 cases that 
underwent MPI including 48 males (51%) and 46 

females (49%) with a mean age of 65.6510.04. 
Of 94 cases, 53 (56.4%) showed normal scans 
while 41 cases (43.6%) showed abnormal scan 
results. Baseline characteristics of patients are 
presented in Table 2. 

Table 1. The results of algorithm on the cardiac of XCAT phantoms and their reconstructed SPECT images 

Gender Age 
Weight 

(kg) 
Height 
(cm) 

BMI Φ Ɵ Φ(phantom) Ɵ(phantom)  

Male 36 87 176 24.38 35.05 59.35 38.34 62.09  

Male 33 70 176 22.35 35.16 59.11 34.81 63.86  

Male 67 89 178 28.22 35.08 57.87 38.08 60.70  

Female 47 63 174 20.81 39.60 59.69 39.07 60.43  

Table 2. Baseline characteristics of patients  

 All patients (n=94) Normal scan (n=53) Abnormal scan (n=41) 

Age (meanSD) 65.6510.04 67.1510.03 63.719.83 

Sex 

      Male 

      Female 

 

48 (51%) 

46 (49%) 

 

24 (45%) 

29 (55%) 

 

24 (58%) 

17 (42%) 

Ɵ (meanSD) 101.4435.84 78.8624.68 130.6225.44 

Φ (meanSD) 40.1910.61 42.739.68 36.9010.95 

According to the results, there was a significant 
difference between the two obtained angles and 
the result of the scan (p<0.05). The mean of Ɵ for 
the abnormal group and normal group were 

130.6225.44 and 78.8624.68 (p=0.001) and for 

Φ were 36.9010.95 and 42.739.68 (p=007), 
respectively. According to the receiver operating 
characteristic (ROC) curve analysis with the area-
under-the-curve (AUC), the ideal cut-off of Ɵ for 
an abnormal scan was 91.79 (AUC, 0.93; 95%CI, 
0.88-0.99; p=0.001) with the sensitivity of 98% 
and specificity of 80%. In addition, the ideal cut-
off for Φ for a normal scan was 44.22 (AUC, 0.68; 
95%CI, 0.57-0.79; p=0.003) with a sensitivity of 
56% and specificity of 81% (Figure 3). There was 
no significant relationship between the two 
angles with age, sex, hypertension, and diabetes 
(p>0.05).  
To classify these data with SVM, 66 cases were 
used as training set and 28 cases were used as 
test, which have been selected randomly. The 
recall was obtained 0.9164±0.1007, 
0.8973±0.1015, 0.6082±0.1766 for model 1 

(Ɵ+Φ), model 2 (Ɵ), and model 3 (Φ), respectively. 
The precision was obtained 0.7805±0.0782, 
0.7697±0.0952, 0.4310±0.0702 for model 1 (Ɵ  
and Φ), model 2 (Ɵ), and model 3 (Φ), 
respectively. Furthermore, AUC was obtained 
0.9351±0.0413, 0.9292±0.0582, 0.6232±0.0758 
for model 1 (Ɵ and Φ), model 2 (Ɵ), and model 3 
(Φ), respectively (Figures 4 and 5). 

DISCUSSION 

In the last decades, several efforts have been 
introduced for application of quantitative 
parameters in medical imaging modalities for faster 
and more accurate interpretation. For MPI, various 
quantitative parameters are applied such as 
quantitative polar map which displays the extent, 
and severity of myocardial perfusion defects [28]. 
Total perfusion deficit (TPD) is another quantitative 
parameter of overall magnitude of hypoperfusion 

[29]. In addition, segmental perfusion scores which 
divides cardiac territories into 17 segment and 
each segment is scored 0-5 based on uptake (0 = 
normal; 1 = mildly abnormal;  
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Figure 3. The receiver operating characteristic (ROC) curve of Ɵ (A) and Φ (B)  

 

 
Figure 4. The results support vector machine (SVM) classification (whatever color of the lines moves to purple, that line is the 
boundary of classification) 

2 = moderately abnormal; 3 = severely abnormal; 4 
= absent), then based on the scores, defect severity 
is calculated [30]. Various validation studies have 
been performed for these parameters [31-33]. In 
this study, we tried to introduce a new quantitative 
parameter for the interpretation of MPI by using 
two angles obtained from LVAA. We indicated that 
there is a significant difference between these 
angles defined as theta (Ɵ) and phi (Φ) with the 
result of the scan, which Ɵ was significantly higher 
in abnormal scan compared to normal scan and Φ 
was significantly higher in normal scan compared 

to abnormal scan. It has been shown that Ɵ can 
diagnose the abnormal scan with sensitivity and 
specificity of 98% and 80%, respectively. In 
addition, Φ with sensitivity and specificity of 56% 
and 81% can diagnose normal scans. Therefore, 
they can be used for the interpretation of MPI, 
quantitatively. In addition, there was no significant 
relationship between these angles with sex, age, 
diabetes, and hypertension. 
In this study, we have demonstrated the possibility 

of quickly assessing the Left Ventricular Axis of the 

Heart using SPECT Images - as a substitute for LV 
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long axis function - during routine gated cardiac 

SPECT protocol. To our knowledge, this is the first 

evidence of the diagnostic value of assessing LV 

long axis function using universally obtained 

cardiac SPECT images. 

The function of the long axis is essential for the 

mechanics of the heart. Firstly, it helps with 

ventricular ejection by decreasing the size of the 

long axis left ventricle cavity. Secondly, during early 

diastole, the energy stored during systole creates 

suction in the ventricle, which is crucial for quick 

filling of the ventricle at low pressures in a healthy 

heart [2, 34]. 

The assessment of left ventricular long axis 

function using echocardiography has 

demonstrated its predictive value for negative 

cardiovascular outcomes in various conditions, 

such as atrial fibrillation, post-myocardial 

infarction, heart failure, and tetralogy of Fallot [35]. 

 

 
Figure 5. The results of recall (A), precision (B), area under the curve (AUC) (C), and receiver operating characteristic (ROC) curve (D) for support 
vector machine (SVM) classification (model 1: Ɵ and Φ, model 2: Ɵ, model 3: Φ) 

Recently, there has been significant interest in the 
prognostic potential of echo-derived global 
longitudinal strain, which has been found to 
forecast a range of adverse outcomes in different 
populations, including acute myocardial 
infarction, ischemic cardiomyopathy, heart 
failure (with reduced or preserved ejection 
fraction), aortic stenosis, tetralogy of Fallot, 
amyloidosis, post-heart transplantation, and 
post-anthracycline therapy [36]. Additionally, 
echo global longitudinal strain has been shown to 
independently predict the development of atrial 
fibrillation in a community-based cohort [37]. 

Korosoglou et al. utilized CMR to demonstrate 
that strain encoded magnetic resonance imaging 
(SENC) offered additional predictive value for 
patients undergoing dobutamine stress CMR [38]. 
More recently, Buss et al. showed that left 
ventricular longitudinal strain, evaluated using 
specialized CMR feature tracking software, 
independently predicts survival in dilated 
cardiomyopathy [39]. However, the analysis of 
strain using CMR has traditionally relied on 
specialized software, leading to limited adoption 
of these techniques in clinical practice. 



Iran J Nucl Med. 2024;32(2):102-111 
 

 

110 

 

This study is conducted at a single center and is 
observational in nature, thus it possesses the 
limitations adherent to this type of study design. 
Therefore, despite the adjustment for various 
clinically relevant factors, it is probable that some 
degree of residual confounding still exists. Our 
study had some drawbacks. First, we reported the 
primary results of our designed algorithm in the 
stress phase and, therefore, for better decision, 
the result of the rest phase should be added. 
Second, for more accurate result, the relationship 
between cardiac defect intensity and the 
variation in LVAA should be evaluated. In 
addition, we tried to outline the mechanism and 
influencing factors of LVAA with the anticipation 
of the routine application of these measurements 
in clinical practice. However, in what approach 
this information will be of use in clinical scenarios 
remains unclear. We await the day when such 
quantitative measurements are recognized as a 
new assessment of cardiac function. Verification 
of such data to large groups of patients who also 
have gold standard outcome measures is highly 
required. 

CONCLUSION 

It can be concluded that LVAA as a quantitative 
factor is significantly different between normal 
and abnormal MPS and can be used for the 
evaluation of MPS. However, further studies are 
needed for its application in clinical practice. 
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