Assessment of radiation-induced thyroid gland damage in breast cancer patients: A systematic review

Document Type : Systematic Review/Meta-analysis

Authors

1 Department of Radiation Oncology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

2 Preclinical Lab, Core Facility, Kermanshah University of Medical Sciences, Kermanshah, Iran

3 Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

Introduction: The thyroid gland is known as particularly sensitive to radiation therapy. Numerous research studies have indicated that radiation treatment for breast cancer can expose this organ to significant levels of radiation. Hence, the primary objective of this study is to investigate the thyroid gland as a potential organ at risk following radiation therapy for breast cancer, utilizing a systematic review methodology.
Methods: In this systematic review, two independent reviewers conducted a comprehensive search identify relevant studies. The search included various electronic databases such as PubMed, WOS, Scopus, Embase, Science Direct, and Google Scholar. The search criteria encompassed articles published in English up until January 1, 2024.
Results: In the initial search of the relevant databases, 3288 articles were identified and transferred to the information management software (EndNote). A thorough analysis was conducted on a total of 39 studies with varying sample sizes. Among these studies, hypothyroidism was found to be the most common thyroid disorder following radiation therapy for breast cancer, accounting for 40% of the cases. The findings indicate that radiation doses ranging from 20 to 40 Gray- particularly those exceeding 36 Gray-can contribute to the development of hypothyroidism.
Conclusion: The research lightened the significant effect of radiation therapy on the thyroid gland. It is recommended to adopt improved techniques and protective measures to protect the thyroid during radiation treatment. Additionally, regular monitoring of breast cancer patients after radiation therapy is essential to better assess any potential dysfunction of the thyroid gland.

Keywords

Main Subjects


  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313.
  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021 Mar 17;134(7):783-91.
  3. Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol Biomarkers Prev. 2017 Jun;26(6):809-15.
  4. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A, Siegel RL. Breast cancer statistics, 2019. CA Cancer J Clin. 2019 Nov;69(6):438-51.
  5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209-49.
  6. Xu FF, Cao L, Xu C, Cai G, Wang SB, Qi WX, Chen JY. Practical model to optimize the strategy of adjuvant postmastectomy radiotherapy in T1-2N1 breast cancer with modern systemic therapy. Front Oncol. 2022 Feb 24;12:789198. 
  7. Kao YS. Comment to "Long term results of a phase II trial of hypofractionated adjuvant radiotherapy for early-stage breast cancer with volumetric modulated arc therapy and simultaneous integrated boost". Radiother Oncol. 2022 Jan;166:100. 
  8. Van de Steene J, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: the missing link. Radiother Oncol. 2000 Jun;55(3):263-72.
  9. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y; Early breast cancer trialists' collaborative group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005 Dec 17;366(9503):2087-106.
  10. Bucci MK, Bevan A, Roach M 3rd. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin. 2005 Mar-Apr;55(2):117-34.
  11. Roberson J, Huang H, Noldner C, Hou W, Mani K, Valentine E, Ryu S, Stessin A. Thyroid volume changes following adjuvant radiation therapy for breast cancer. Clin Transl Radiat Oncol. 2022 Dec 16;39:100566.
  12. Alterio D, Jereczek-Fossa BA, Franchi B, D'Onofrio A, Piazzi V, Rondi E, Ciocca M, Gibelli B, Grosso E, Tradati N, Mariani L, Boboc GI, Orecchia R. Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer: a retrospective analysis of seventy-three patients. Int J Radiat Oncol Biol Phys. 2007 Jan 1;67(1):144-50.
  13. Tunio MA, Al Asiri M, Bayoumi Y, Stanciu LG, Al Johani N, Al Saeed EF. Is thyroid gland an organ at risk in breast cancer patients treated with locoregional radiotherapy? Results of a pilot study. J Cancer Res Ther. 2015 Oct-Dec;11(4):684-9. 
  14. Bassiri RM, Utiger RD. Thyrotropin-releasing hormone in the hypothalamus of the rat. Endocrinology. 1974 Jan;94(1):188-97.
  15. Jereczek-Fossa BA, Alterio D, Jassem J, Gibelli B, Tradati N, Orecchia R. Radiotherapy-induced thyroid disorders. Cancer Treat Rev. 2004 Jun;30(4):369-84. 
  16. Darvish L, Ghorbani M, Teshnizi SH, Roozbeh N, Seif F, Bayatiani MR, Knaup C, Amraee A. Evaluation of thyroid gland as an organ at risk after breast cancer radiotherapy: a systematic review and meta-analysis. Clin Transl Oncol. 2018 Nov;20(11):1430-8.
  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71.
  18. Farshchian N, Amirifard N, Azar MHS, Heydarheydari S, Farshchian N, Haghparast A. Thyroid function following radiation therapy in breast cancer patients: risk of radiation-induced hypothyroidism. Rep Pract Oncol Radiother. 2022 Sep 19;27(4):691-8.
  19. Lo CK, Mertz D, Loeb M. Newcastle-Ottawa scale: comparing reviewers' to authors' assessments. BMC Med Res Methodol. 2014 Apr 1;14:45.
  20. Mahmoudi S, Kavousi N, Hassani M, Esfahani M, Nedaie HA. Assessment of radiation-induced secondary cancer risks in breast cancer patients treated with 3D conformal radiotherapy. Iran J Med Phys. 2021;18(4):278-84.
  21. Ramezani Farkhani R, Gholamhosseinian H, Anvari K, Forghani MN. Assessment of thyroid lobe dose in breast cancer intraoperative radiotherapy. J Biomed Phys Eng. 2021 Feb 1;11(1):55-60. 
  22. Ansari L, Nasiri N, Aminolroayaei F, Sani KG, Dorri-Giv M, Abedi-Firouzjah R, Sardari D. The measurement of thyroid absorbed dose by Gafchromic™ EBT2 film and changes in thyroid hormone levels following radiotherapy in patients with breast cancer. J Med Signals Sens. 2020 Feb 6;10(1):42-7. 
  23. Kikawa Y, Kosaka Y, Hashimoto K, Hohokabe E, Takebe S, Narukami R, Hattori T, Ueki K, Ogura K, Imagumbai T, Kato H, Kokubo M. Prevalence of hypothyroidism among patients with breast cancer treated with radiation to the supraclavicular field: a single-centre survey. ESMO Open. 2017 Apr 27;2(1):e000161.
  24. Reinertsen KV, Cvancarova M, Wist E, Bjøro T, Dahl AA, Danielsen T, Fosså SD. Thyroid function in women after multimodal treatment for breast cancer stage II/III: comparison with controls from a population sample. Int J Radiat Oncol Biol Phys. 2009 Nov 1;75(3):764-70.
  25. Huang J, Walker R, Groome PG, Shelley W, Mackillop WJ. Risk of thyroid carcinoma in a female population after radiotherapy for breast carcinoma. Cancer. 2001 Sep 15;92(6):1411-8.
  26. Akyurek S, Babalioglu I, Kose K, Gokce SC. Thyroid dysfunction following supraclavicular irradiation in the management of carcinoma of the breast. Int J Hematol Oncol/ Uluslar Hematol-Onkol Derg. 2014;24(2):139-44
  27. Youssef M, Elmaraghi C, Kamel T, El‐Leithy M, Abdelhakim K. Incidence and predictive factors of radiation‐induced hypothyroidism in breast cancer patients who receive supraclavicular lymph nodes irradiation: a prospective study. Precis Radiat Oncol. 2022;6(4):298-305.
  28. Farhood B, Bahreyni Toossi MT, Vosoughi H, Khademi S, Knaup C. Measurement of thyroid dose by TLD arising from radiotherapy of breast cancer patients from supraclavicular field. J Biomed Phys Eng. 2016 Sep 1;6(3):147-56.
  29. Jang H, Baek J, Kim W, Sohn J. Assessment of intensity modulated radiation therapy in left breast cancer including regional nodes without the internal mammary node: secondary cancer risks on thyroid and stomach. Int J Radiat Res. 2021;19(4):921-8.
  30. Cieszyńska M, Kluźniak W, Wokołorczyk D, Cybulski C, Huzarski T, Gronwald J, Falco M, Dębniak T, Jakubowska A, Derkacz R, Marciniak W, Lener M, Woronko K, Mocarz D, Baszuk P, Bryśkiewicz M, Narod SA, Lubiński J. Risk of second primary thyroid cancer in women with breast cancer. Cancers (Basel). 2022 Feb 15;14(4):957. 
  31. Digkas E, Smith DR, Wennstig AK, Matikas A, Tegnelius E, Valachis A. Incidence and risk factors of hypothyroidism after treatment for early breast cancer: a population-based cohort study. Breast Cancer Res Treat. 2024 Feb;204(1):79-87.
  32. Karimijavid MR, Pashaki AS, Borzouei S, Khanlarzadeh E, Gholami MH, Nikzad S. Hypothyroidism evaluation after radiotherapy of breast and supraclavicular in patients with breast cancer. Adv Biomed Res. 2023 Feb 25;12:44.
  33. Ambrose L, Stanton C, Lewis L, Lamoury G, Morgia M, Carroll S, Bromley R, Atyeo J. Potential gains: comparison of a mono-isocentric three-dimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-modulated radiotherapy (hIMRT) to the whole breast and supraclavicular fossa (SCF) region. J Med Radiat Sci. 2022 Mar;69(1):75-84.
  34. Smith GL, Smith BD, Giordano SH, Shih YC, Woodward WA, Strom EA, Perkins GH, Tereffe W, Yu TK, Buchholz TA. Risk of hypothyroidism in older breast cancer patients treated with radiation. Cancer. 2008 Mar 15;112(6):1371-9.
  35. Joensuu H, Viikari J. Thyroid function after postoperative radiation therapy in patients with breast cancer. Acta Radiol Oncol. 1986 May-Jun;25(3):167-70.
  36. Dorri Giv M, Bahreini Toosi MH, Aghamiri SM, Akbari F, Taeb S. Calculation of thyroid dose with planner system and evaluation of thyroid function after radiotherapy for patients with breast cancer. J Biomed Phys Eng. 2016 Dec 1;6(4):220-34. 
  37. Johansen S, Reinertsen KV, Knutstad K, Olsen DR, Fosså SD. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study. Radiat Oncol. 2011 Jun 9;6:68.
  38. Wolny-Rokicka E, Tukiendorf A, Wydmański J, Roszkowska D, Staniul BS, Zembroń-Łacny A. Thyroid Function after postoperative radiation therapy in patients with breast cancer. Asian Pac J Cancer Prev. 2016 Oct 1;17(10):4577-81. 
  39. Adjadj E, Rubino C, Shamsaldim A, Lê MG, Schlumberger M, de Vathaire F. The risk of multiple primary breast and thyroid carcinomas. Cancer. 2003 Sep 15;98(6):1309-17. 
  40. Akın M, Ergen A, Unal A, Bese N. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer. J Cancer Res Ther. 2014 Oct-Dec;10(4):942-4. 
  41. Besbes M, Siala W, Daoud J. Dosimétrie in vivo pour évaluer la dose reçue par la thyroïde en radiothérapie des cancers du cavum et du sein [Absorbed dose evaluation of thyroid during nasopharynx and breast carcinoma irradiation by in vivo dosimetry]. Cancer Radiother. 2003 Oct;7(5):297-301.
  42. Falstie-Jensen AM, Esen BÖ, Kjærsgaard A, Lorenzen EL, Jensen JD, Reinertsen KV, Dekkers OM, Ewertz M, Cronin-Fenton DP. Incidence of hypothyroidism after treatment for breast cancer-a Danish matched cohort study. Breast Cancer Res. 2020 Oct 13;22(1):106. 
  43. Haciislamoglu E, Canyilmaz E, Gedik S, Aynaci O, Serdar L, Yoney A. Effect of dose constraint on the thyroid gland during locoregional intensity-modulated radiotherapy in breast cancer patients. J Appl Clin Med Phys. 2019 Jul;20(7):135-41.
  44. Huang H, Roberson J, Hou W, Mani K, Valentine E, Ryu S, Stessin A. NTCP model for hypothyroidism after supraclavicular-directed radiation therapy for breast cancer. Radiother Oncol. 2021 Jan;154:87-92. 
  45. Imani A, Mesbahi A, Jafari-Koshki T, Zamiri RE, Motlagh BN. Evaluation of the radiobiological models predicting the radiation-induced hypothyroidism in the partially irradiated thyroid gland of patients with breast cancer. Int J Cancer Manag. 2022 Jan;15(4).
  46. Jeong JU, Yoon JH, Park MH, Yoon MS, Song JY, Nam TK, Chung WK, Kim YH, Suh CO, Ahn SJ. A phase I/II trial to evaluate the technical feasibility of partial breast irradiation with three-dimensional conformal radiation therapy in Korean women with stage I breast carcinoma: an initial report of the Korean radiation therapy oncology group (KROG) study 0804. Cancer Res Treat. 2015 Jan;47(1):18-25. 
  47. Kanyilmaz G, Aktan M, Koc M, Demir H, Demir LS. Radiation-induced hypothyroidism in patients with breast cancer: a retrospective analysis of 243 cases. Med Dosim. 2017 Autumn;42(3):190-6.
  48. Madisetty A, Suryadevara A, Chinta SK, Vuppu S, R Marella VR. Should we consider thyroid gland as an organ at risk in carcinoma breast patients receiving adjuvant radiation by conformal technique? A single institute dosimetric study. Indian J Cancer. 2020 Oct-Dec;57(4):393-7.
  49. Momeni Z, Tavakoli MB, Atarod M. Estimation of the thyroid secondary cancer risk on the patient of standard breast external beam radiotherapy. J Med Signals Sens. 2018 Oct-Dec;8(4):238-43. 
  50. Park YI, Cho MS, Chang JS, Kim JS, Kim YB, Lee IJ, Hong CS, Choi SH. Normal tissue complication probability models of hypothyroidism after radiotherapy for breast cancer. Clin Transl Radiat Oncol. 2024 Jan 24;45:100734.
  51. Pulickal SG, Sebastian N, Bhaskaran R, Aparna P. Effect of change in neck position on thyroid dose and volume in supraclavicular irradiation for breast cancer using conformal technique. J Radiother Pract. 2022;21(2):234-8.
  52. Rubagumya F, Makori K, Dharsee N, Tausi M. Thyroid function post supraclavicular lymph node irradiation in patients with breast cancer. Rwanda Med J. 2023;80(1):35-43.
  53. Sun LM, Lin CL, Liang JA, Huang WS, Kao CH. Radiotherapy did not increase thyroid cancer risk among women with breast cancer: a nationwide population-based cohort study. Int J Cancer. 2015 Dec 15;137(12):2896-903.
  54. Zhao XR, Fang H, Jing H, Tang Y, Song YW, Liu YP, Jin J, Chen B, Qi SN, Tang Y, Lu NN, Li N, Li YX, Wang SL. Radiation-induced hypothyroidism in patients with breast cancer after hypofractionated radiation therapy: a prospective cohort study. Int J Radiat Oncol Biol Phys. 2023 Jan 1;115(1):83-92.