Radiation absorbed dose evaluation of [153Sm]Sm-DOTMP radiopharmaceutical based on biodistribution data in Wistar rats

Document Type : Original Article

Authors

1 Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Abstract

Introduction: Bone metastases are a frequent complication in various tumors such as prostate, breast, and lung carcinoma often causing progressive pain. Bone-seeking beta-emitting radiopharmaceuticals such as samarium-153-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid ([153Sm]Sm-DOTMP) are potentially utilized for bone pain palliation.
Methods: This research evaluated the radiation absorbed dose of [153Sm]Sm-DOTMP radiopharmaceutical for adult men based on biodistribution data in Wistar rats. The Medical Internal Radiation Dosimetry (MIRD) dose calculation method and the Sparks and Aydogan methodology were applied.
Results: About 56% of the injected activity is accumulated on the surface of the trabecular and compact bones. Radiation absorbed doses of red bone marrow and osteogenic cells were estimated at 0.66±0.04 and 3.43±0.23 mGy/MBq, respectively. The maximum administrated activity was obtained at 43.3 MBq/kg (1.17 mCi/kg) of body weight with about 10.4 Gy absorbed dose of bone surface for a 70 kg adult man. The effective dose of [153Sm]Sm-DOTMP radiopharmaceutical was estimated at 0.14±0.01 mSv/MBq and the urinary bladder wall and kidneys absorbed doses were evaluated at about 0.20±0.02 mGy/MBq and 0.05±0.01 mGy/MBq, respectively. The urinary and gastrointestinal tracts were the next organs with the highest radiation absorbed dose as the main routes of excretion of radioactivity.
Conclusion: This study showed that the radiopharmaceutical [153Sm]Sm-DOTMP can provide palliative care for bone metastases while delivering low undesired doses to surrounding normal tissues.

Keywords

Main Subjects


  1. Banerjee S, Pillai MR, Knapp FF. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015 Apr 22;115(8):2934-74. 
  2. Bahrami-Samani A, Bagheri R, Jalilian AR, Shirvani-Arani S, Ghannadi-Maragheh M, Shamsaee M. Production, quality control and pharmacokinetic studies of Ho-EDTMP for therapeutic applications. Sci Pharm. 2010 Jul-Sep;78(3):423-33. 
  3. Bagheri R. 177Lu-EDTMP radiation absorbed dose evaluation in man based on biodistribution data in Wistar rats. Nucl Eng Technol. 2023;55:254-60
  4. Dalvand S, Sadeghi M. Bone marrow dosimetry for 141Ce-EDTMP as a potential bone pain palliation complex: A Monte Carlo study. Appl Radiat Isot. 2022 Apr;182:110113.
  5. Manafi-Farid R, Masoumi F, Divband G, Saidi B, Ataeinia B, Hertel F, Schweighofer-Zwink G, Morgenroth A, Beheshti M. Targeted palliative radionuclide therapy for metastatic bone pain. J Clin Med. 2020 Aug 12;9(8):2622.
  6. Sharma S, Singh B, Koul A, Mittal BR. Comparative therapeutic efficacy of 153Sm-EDTMP and 177Lu-EDTMP for bone pain palliation in patients with skeletal metastases: patients' pain score analysis and personalized dosimetry. Front Med (Lausanne). 2017 May 1;4:46.
  7. Bahrami-Samani A, Ghannadi-Maragheh M, Jalilian AR, Meftahi M, Shirvani-Arani S, Moradkhani S. Production, quality control and biological evaluation of 153Sm-EDTMP in wild-type rodents.  Iran J Nucl Med. 2009;17(2):12-9.
  8. Pfennig G, Klewe-Nebenius H, Seelmann-Eggebert W. Karlsruher nuklidkarte. Haberbeck; 1995.
  9. Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, Kotler JA, Freeman LM, Olivier P; Quadramet 424Sm10/11 Study Group. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004 May;63(5):940-5.
  10. International Atomic Energy Agency. Pain palliation of bone metastases: production, quality control and dosimetry of radiopharmaceuticals, IAEA radioisotopes and radiopharmaceuticals series No. 9, IAEA, Vienna; 2023.
  11. Das T, Chakraborty S, Sarma HD, Banerjee S. Formulation and evaluation of freeze-dried DOTMP kit for the preparation of clinical-scale 177Lu-DOTMP and 153Sm-DOTMP at the hospital radiopharmacy. Radiochim Acta. 2015;103:595-604.
  12. Bryan JN, Bommarito D, Kim DY, Berent LM, Bryan ME, Lattimer JC, Henry CJ, Engelbrecht H, Ketring A, Cutler C. Comparison of systemic toxicities of 177Lu-DOTMP and 153Sm-EDTMP administered intravenously at equivalent skeletal doses to normal dogs. J Nucl Med Technol. 2009 Mar;37(1):45-52. 
  13. Chakraborty S, Vimalnath KV, Rajeswari A, Chakravarty R, Sarma HD, Radhakrishnan E, Kamaleshwaran K, Shinto AS, Dash A. A "mix-and-use" approach for formulation of human clinical doses of 177 Lu-DOTMP at hospital radiopharmacy for management of pain arising from skeletal metastases. J Labelled Comp Radiopharm. 2017 Jul;60(9):410-9.
  14. Chakraborty S, Das T, Banerjee S, Chaudhari PR, Sarma HD, Venkatesh M, Pillai MR. Preparation and biological evaluation of 153Sm-DOTMP as a potential agent for bone pain palliation. Nucl Med Commun. 2004 Dec;25(12):1169-76.
  15. Simón J, Frank RK, Crump DK, Erwin WD, Ueno NT, Wendt RE 3rd. A preclinical investigation of the saturation and dosimetry of 153Sm-DOTMP as a bone-seeking radiopharmaceutical. Nucl Med Biol. 2012 Aug;39(6):770-6.
  16. Wendt RE 3rd, Ketring AR, Frank RK, Simón J. Dosimetric implications of the potential radionuclidic impurities in 153Sm-DOTMP. Appl Radiat Isot. 2022 Jul;185:110246.
  17. Keats TE. Reference Man. A Report Prepared by a Task Group of Committee 2 of the International Commission on Radiological Protection; 1975.
  18. Peters JM, Boyd EM. Organ weights and water levels of the rat following reduced food intake. J Nutr. 1966 Dec;90(4):354-60. 
  19. Miller G, Klumpp JA, Poudel D, Weber W, Guilmette RA, Swanson J, Melo DR. Americium systemic biokinetic model for rats. Radiat Res. 2019 Jul;192(1):75-91.
  20. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In: Stelson AT, Stabin MG, Sparks RB, editors. Sixth international radiopharmaceutical dosimetry symposium. Oak Ridge Associated Universities;1999.705-16.
  21. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J Nucl Med. 2009 Mar;50(3):477-84.
  22. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005 Jun;46(6):1023-7.
  23. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332.
  24. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3-4):5-265. 
  25. Bal C, Arora G, Kumar P, Damle N, Das T, Chakraborty S, Banerjee S, Venkatesh M, Zaknun JJ, Pillai MR. Pharmacokinetic, dosimetry and toxicity study of ¹⁷⁷Lu-EDTMP in patients: phase 0/I study. Curr Radiopharm. 2016;9(1):71-84.
  26. Bagheri R, Ranjbar H. Radiation absorbed dose evaluation of [177Lu]Lu-DOTMP radiopharmaceutical in man based on biodistribution data in Wistar rats. Iran J Med Phys. 2024 Nov;21(6):372.
  27. Louw WK, Dormehl IC, van Rensburg AJ, Hugo N, Alberts AS, Forsyth OE, Beverley G, Sweetlove MA, Marais J, Lötter MG, van Aswegen A. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model. Nucl Med Biol. 1996 Nov;23(8):935-40.
  28. Bagheri R, Bahrami-Samani A, Ghannadi-Maragheh M. Estimation of radiation absorbed dose in man from 166Ho-EDTMP based on biodistribution data in Wistar rats. Radiat Phys Chem. 2021 Oct;187:109560.  
  29. Bartlett ML, Webb M, Durrant S, Morton AJ, Allison R, Macfarlane DJ. Dosimetry and toxicity of Quadramet for bone marrow ablation in multiple myeloma and other haematological malignancies. Eur J Nucl Med Mol Imaging. 2002 Nov;29(11):1470-7.
  30. Breitz HB, Wendt RE 3rd, Stabin MS, Shen S, Erwin WD, Rajendran JG, Eary JF, Durack L, Delpassand E, Martin W, Meredith RF. 166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy. J Nucl Med. 2006 Mar;47(3):534-42.
  31. Bagheri R, Afarideh H, Maragheh MG, Shirmardi SP, Samani AB. Study of bone surface absorbed dose in treatment of bone metastases via selected radiopharmaceuticals: using MCNP4C code and available experimental data. Cancer Biother Radiopharm. 2015 May;30(4):174-81.
  32. Bélanger MJ, Krause SM, Ryan C, Sanabria-Bohorquez S, Li W, Hamill TG, Burns HD. Biodistribution and radiation dosimetry of [18F]F-PEB in nonhuman primates. Nucl Med Commun. 2008 Oct;29(10):915-9.
  33. Rösch F, Herzog H, Plag C, Neumaier B, Braun U, Müller-Gärtner HW, Stöcklin G. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med. 1996 Aug;23(8):958-66.
  34. Vigna L, Matheoud R, Ridone S, Arginelli D, Della Monica P, Rudoni M, Inglese E, Brambilla M. Characterization of the [153Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis. Phys Med. 2011 Jul;27(3):144-52.
  35. Lyra M, Papanikolos G, Phinou P, Frantzis AP, Jordanou J, Limouris GS. Rhenium-186-HEDP dosimetry and multiple bone metastases palliation therapy effects. In: Limouris GS, Biersack HJ, Shuckla SK, editors. radionuclide therapy for oncology – current status and future aspects- 1st ed. MEDITERRA-Publishers;2003.51-60.
  36. Liepe K, Hliscs R, Kropp J, Runge R, Knapp FF Jr, Franke WG. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J Nucl Med. 2003 Jun;44(6):953-60.