Radiomics analysis on blood-pool phase of bone scintigraphy for the diagnosis of Juvenile Idiopathic Arthritis

Document Type : Original Article

Authors

1 Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Department of Nuclear Medicine, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran

3 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Mathematics and Computer Science, Shahed University, Tehran, Iran

5 Department of Pediatric Rheumatology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Diagnosing Juvenile Idiopathic Arthritis (JIA) presents challenges due to symptom variations, clinical-radiologic delays, and the absence of definitive diagnostic tools. This study aimed to evaluate the diagnostic capability of radiomic features derived from blood pool phase images obtained through bone scintigraphy in JIA.
Methods: A cohort of 190 patients was included, utilizing the area between knee growth plates as the region of interest (ROI) for extracting image features. After preprocessing, quantitative features were extracted from original and filtered images. A recursive feature elimination (RFE) algorithm identified significant features, subsequently employed in training a random forest classifier.
Results: In the validation phase, our radiomic model, comprising 14 features (4 original and 10 filtered image features), achieved an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI: 0.88–0.92). This robust performance confirmed the efficacy of radiomics in identifying active knee arthritis using technetium–99m-methyl diphosphonate blood pool images in JIA patients.
Conclusion: This study highlights the diagnostic accuracy of radiomics in discerning arthritic joints, suggesting its potential as an alternative to conventional quantification techniques. The robustness of radiomics in diagnosing arthritic joints signifies a promising avenue for future research in JIA diagnosis and treatment.

Keywords

Main Subjects


  1. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, He X, Maldonado-Cocco J, Orozco-Alcala J, Prieur AM, Suarez-Almazor ME, Woo P. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390-2.
  2. Giancane G, Consolaro A, Lanni S, Davì S, Schiappapietra B, Ravelli A. Juvenile idiopathic arthritis: diagnosis and treatment. Rheumatol Ther. 2016;3(2):187-207.
  3. Prince FHM, Otten MH, Suijlekom-Smit LWAv. Diagnosis and management of juvenile idiopathic arthritis. Brit Med J. 2010;341:c6434.
  4. Packham JC, Hall MA. Long-term follow-up of 246 adults with juvenile idiopathic arthritis: functional outcome. Rheumatology (Oxford). 2002;41(12):1428-35.
  5. Gardner-Medwin JM, Irwin G, Johnson K. MRI in juvenile idiopathic arthritis and juvenile dermatomyositis. Ann N Y Acad Sci. 2009;1154:52-83.
  6. McKay GM, Cox LA, Long BW. Imaging juvenile idiopathic arthritis: assessing the modalities. Radiol Technol. 2010;81(4):318-27.
  7. Gylys-Morin VM, Graham TB, Blebea JS, Dardzinski BJ, Laor T, Johnson ND, Oestreich AE, Passo MH. Knee in early juvenile rheumatoid arthritis: MR imaging findings. Radiology. 2001;220(3):696-706.
  8. Sudoł-Szopińska I, Kontny E, Maśliński W, Prochorec-Sobieszek M, Kwiatkowska B, Zaniewicz-Kaniewska K, Warczyńska A. The pathogenesis of rheumatoid arthritis in radiological studies. Part I: Formation of inflammatory infiltrates within the synovial membrane. J Ultrason. 2012;12(49):202-13.
  9. Ostrowska M, Maśliński W, Prochorec-Sobieszek M, Nieciecki M, Sudoł-Szopińska I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia. 2018;56(2):111-20.
  10. Ording Muller L-S, Humphries P, Rosendahl K. The joints in juvenile idiopathic arthritis. Insights Imaging. 2015;6(3):275-84.
  11. Lee JW, Jung KJ, Lee SM, Chang SH. Clinical use of quantitative analysis of bone scintigraphy to assess the involvement of arthritis diseases in patients with joint symptoms. Diagnostics. 2020;10(12):1000.
  12. Yoo IR. Bone SPECT/CT of the foot and ankle: potential clinical application for chronic foot pain. Eur J Nucl Med Mol I. 2020;54(1):1-8.
  13. Sandrock D, Backhaus M, Burmester G, Munz DL. Imaging techniques in rheumatology: scintigraphy in rheumatoid arthritis. Z Rheumatol. 2003;62:476-80.
  14. Kim JY, Choi YY, Kim CW, Sung Y-K, Yoo D-H. Bone scintigraphy in the diagnosis of rheumatoid arthritis: is there additional value of bone scintigraphy with blood pool phase over conventional bone scintigraphy?. J Korean Med Sci. 2016;31(4):502-9.
  15. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563-77.
  16. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62.
  17. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging. 2020 Aug 12;11(1):91.
  18. Papathanassiou D, Bruna-Muraille C, Jouannaud C, Gagneux-Lemoussu L, Eschard JP, Liehn JC. Single-photon emission computed tomography combined with computed tomography (SPECT/CT) in bone diseases. Jt Bone Spine. 2009;76(5):474-80.
  19. Masaoka S. Evaluation of arterial obstructive leg and foot disease by three-phase bone scintigraphy. Ann Nucl Med. 2001;15:281-7.
  20. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HC, Bossuyt PM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799.
  21. Lassmann M, Biassoni L, Monsieurs M, Franzius C. The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging. 2008;35(9):1666-8.
  22. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-41.
  23. Thévenaz P, Blue T, Unser M. Image interpolation and resampling. In: Handbook of Medical Imaging, Processing and Analysis. New York: Academic. 2000. p. 393–420.
  24. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, Naqa IE, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Fernandez JS, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, Dijk LVv, Griethuysen Jv, Velden FHPv, Whybra P, Richter C, Löck S. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328-38.
  25. Biau G, Scornet E. A random forest guided tour. Test. 2016;25(2):197-227.
  26. Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: recent advances on its etiology, role of cytokines and pharmacotherapy. Biomedicine & Pharmacotherapy. 2017;92:615-33.
  27. Goronzy JJ, Weyand CM. Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res Ther. 2009;11(5):1-14.
  28. Hemke R, Nusman CM, van der Heijde DM, Doria AS, Kuijpers TW, Maas M, van Rossum MA. Frequency of joint involvement in juvenile idiopathic arthritis during a 5-year follow-up of newly diagnosed patients: implications for MR imaging as outcome measure. Rheumatol Int. 2015;35(2):351-7.
  29. Demircioğlu A. The effect of preprocessing filters on predictive performance in radiomics. Eur Radiol Exp. 2022 Dec;6(1):40.
  30. Patra J, Moulick HN, Manna AK. Medical Image Processing in Nuclear Medicine and Bone Arthroplasty. IOSR J Comput Eng. 2013;13(2):97-110.
  31. Berná L, Torres G, Diez C, Estorch M, Martínez-Duncker D, Carrió I. Technetium-99m human polyclonal immunoglobulin G studies and conventional bone scans to detect active joint inflammation in chronic rheumatoid arthritis. Eur J Nucl Med. 1992;19:173-6.
  32. Fisher B, Frank J, Taylor P. Do Tc-99m-diphosphonate bone scans have any place in the investigation of polyarthralgia?. Rheumatology. 2007; 46 (6): 1036–7.
  33. Lee JW, Chang SH, Jang SJ, Park HJ, Lee SM, Jung KJ. Clinical utility of quantitative analysis of bone scintigraphy in detecting clinically active joint and high disease activity in patients with rheumatoid arthritis. BMC Med Imaging. 2021;21(1):177.
  34. Kim JY, Cho S-K, Han M, Choi YY, Bae S-C, Sung Y-K. The role of bone scintigraphy in the diagnosis of rheumatoid arthritis according to the 2010 ACR/EULAR classification criteria. J Korean Med Sci. 2014;29(2):204-9.