Innovative quantitative analysis of left ventricular axis from cardiac SPECT images: XCAT phantom study and clinical validation

Document Type : Original Article

Authors

1 Electrical Engineerimg Department, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, Iran

2 The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran

3 Department of Nuclear Medicine, Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

Abstract

Introduction: In this study, we aimed to evaluate the possibility of assessing cardiac abnormality using the left ventricular anatomical axis (LVAA) obtained from short-axis views of myocardial perfusion imaging (MPI).
Methods: To obtain LVAA, an ellipse was drawn around the outer wall of SPECT images from XCAT phantoms and patients. The best line was then drawn from the center of all the ellipses in the short-axis views called LVAA. Then, we defined two angles based on LVAA including Ɵ which is the angle created by LVAA with the x-axis, and Φ which is the angle created by LVAA with the z-axis.
Results: In this study, 94 cases were enrolled including 48 males (51%) and 46 females (49%) with a mean age of 65.65±10.04. According to the results, there was a significant difference between the two obtained angles and the result of the scan (p<0.05). The ideal cut-off of Ɵ for an abnormal scan was 91.79 (AUC, 0.93; p=0.001) with the sensitivity of 98% and specificity of 80%.
Conclusion: It can be concluded that LVAA as a quantitative factor is significantly different between normal and abnormal MPS and can be used for the evaluation of MPI.

Keywords

Main Subjects


  1. Sanderson JE. Left and right ventricular long-axis function and prognosis. Heart. 2008 Mar;94(3):262-3.
  2. Carlsson M, Ugander M, Heiberg E, Arheden H. The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H636-44.
  3. Hu K, Liu D, Herrmann S, Niemann M, Gaudron PD, Voelker W, Ertl G, Bijnens B, Weidemann F. Clinical implication of mitral annular plane systolic excursion for patients with cardiovascular disease. Eur Heart J Cardiovasc Imaging. 2013 Mar;14(3):205-12.
  4. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013 May 1;15(1):35.
  5. Schuijf JD, Matheson MB, Ostovaneh MR, Arbab-Zadeh A, Kofoed KF, Scholte AJHA, Dewey M, Steveson C, Rochitte CE, Yoshioka K, Cox C, Di Carli MF, Lima JAC. Ischemia and no obstructive stenosis (INOCA) at CT Angiography, CT myocardial perfusion, invasive coronary angiography, and SPECT: The CORE320 Study. Radiology. 2020 Jan;294(1):61-73.
  6. Peix A, Karthikeyan G, Massardo T, Kalaivani M, Patel C, Pabon LM, Jiménez-Heffernan A, Alexanderson E, Butt S, Kumar A, Marin V, Mesquita CT, Morozova O, Paez D, Garcia EV. Value of intraventricular dyssynchrony assessment by gated-SPECT myocardial perfusion imaging in the management of heart failure patients undergoing cardiac resynchronization therapy (VISION-CRT). J Nucl Cardiol. 2021 Feb;28(1):55-64.
  7. Brankov JG, Yang Y, Narayanan MV, Wermck MN. Motion-compensated 4D processing of gated SPECT perfusion studies. IEEE Nucl Sci Symp Conf Rec (2002). 2002 Nov;3:1380-4.
  8. Kennedy JA, Israel O, Frenkel A. Directions and magnitudes of misregistration of CT attenuation-corrected myocardial perfusion studies: incidence, impact on image quality, and guidance for reregistration. J Nucl Med. 2009 Sep;50(9):1471-8.
  9. Okuda K, Nakajima K, Saito H, Ito T, Kikuchi A, Yoneyama H, Shibutani T, Onoguchi M, Matsuo S, Hashimoto M, Kinuya S. P126 Texture analysis of myocardial perfusion SPECT with a digital cardiac phantom. Eur Heart J Cardiovasc Imaging. 2019 Jun 1;20(Supplement_3):jez147-014.
  10. He X, Jia W, Wu Q, Hintz T. Description of the cardiac movement using hexagonal image structures. Comput Med Imaging Graph. 2006 Sep-Oct;30(6-7):377-82.
  11. Shi P, Sinusas AJ, Constable RT, Ritman E, Duncan JS. Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences. IEEE Trans Med Imaging. 2000 Jan;19(1):36-50.
  12. Hosny T, Khalil MM, Elfiky AA, Elshemey WM. Image quality characteristics of myocardial perfusion SPECT imaging using state-of-the-art commercial software algorithms: evaluation of 10 reconstruction methods. Am J Nucl Med Mol Imaging. 2020 Dec 15;10(6):375-86.
  13. Beekman FJ, Slijpen ET, Niessen WJ. Selection of task-dependent diffusion filters for the post-processing of SPECT images. Phys Med Biol. 1998 Jun;43(6):1713-30.
  14. Fallahi B, Beiki D, Salehi Y, Emami-ardekani A, Fard-esfahani A, Aghahosseini F, Eftekhari M. Benefits of combined pharmacologic and submaximal exercise stress on sub-diaphragmatic activity in myocardial perfusion scintigraphy. Iran J Nucl Med. 2018;26(2):105-11.
  15. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003 Feb;44(2):291-315.
  16. den Boer E, Wulff J, Mäder U, Engwall E, Bäumer C, Perko Z, Timmermann B. Technical Note: Investigating interplay effects in pencil beam scanning proton therapy with a 4D XCAT phantom within the RayStation treatment planning system. Med Phys. 2021 Mar;48(3):1448-55.
  17. Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L, Trebossen R. OSEM-3D reconstruction strategies for the ECAT HRRT. IEEE Symp Con Rec Nucl Sci. 2004;6:3492-6.
  18. Cocosco CA, Netsch T, Se J, Bystrov D, Niessen WJ, Viergever MA. Automatic cardiac region-of-interest computation in cine 3D structural MRI. Int Congr Ser. 2004;1268:1126-31.
  19. Dong X, Shen J, Shao L, Van Gool L. Sub-Markov Random Walk for Image Segmentation. IEEE Trans Image Process. 2016 Feb;25(2):516-27.
  20. Golub GH, Reinsch C. Singular value decomposition and least squares solutions. Handbook for automatic computation: Volume II: Linear Algebra 1971 Apr. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 403-20.
  21. Fitzgibbon A, Pilu M, Fisher RB. Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell. 1999 May;21(5):476-80.
  22. Szpak ZL, Chojnacki W, van den Hengel A. Guaranteed ellipse fitting with a confidence region and an uncertainty measure for centre, axes, and orientation. J Math Imaging Vis. 2015 Jun;52:173-99.
  23. Liang J, Li P, Zhou D, So HC, Liu D, Leung CS, Sui L. Robust ellipse fitting via alternating direction method of multipliers. Signal Process. 2019;164:30-40.
  24. Lok UW, Song P, Trzasko JD, Daigle R, Borisch EA, Huang C, Gong P, Tang S, Ling W, Chen S. Real time SVD-based clutter filtering using randomized singular value decomposition and spatial downsampling for micro-vessel imaging on a Verasonics ultrasound system. Ultrasonics. 2020 Sep;107:106163.
  25. Yuan X, Han L, Qian S, Xu G, Yan H. Singular value decomposition based recommendation using imputed data. Knowl Based Syst. 2019;163:485-94.
  26. Mavroforakis ME, Theodoridis S. A geometric approach to support vector machine (SVM) classification. IEEE Trans Neural Netw. 2006 May;17(3):671-82.
  27. Auria L, Moro RA. Support vector machines (SVM) as a technique for solvency analysis. DIW Berlin Discussion Paper No. 811, 2008 August. Available from: https://ssrn.com/abstract=1424949 
  28. Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol. 2012 Apr;19(2):338-46.
  29. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, Hayes SW, Germano G. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005 Jan-Feb;12(1):66-77.
  30. Tilkemeier PL, Cooke CD, Ficaro EP, Glover DK, Hansen CL, McCallister BD Jr; American Society of Nuclear Cardiology. American Society of Nuclear Cardiology information statement: Standardized reporting matrix for radionuclide myocardial perfusion imaging. J Nucl Cardiol. 2006 Nov;13(6):e157-71.
  31. Ansari M, Hashemi H, Soltanshahi M, Qutbi M, Azizmohammadi Z, Tabeie F, Javadi H, Jafari E, Barekat M, Assadi M. Factors That impact evaluation of left ventricular systolic parameters in myocardial perfusion Gated SPECT with 16 frame and 8 frame acquisition models. Mol Imaging Radionucl Ther. 2018 Jun 7;27(2):55-60.
  32. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation. 1996 Feb 1;93(3):463-73.
  33. Slomka PJ, Fish MB, Lorenzo S, Nishina H, Gerlach J, Berman DS, Germano G. Simplified normal limits and automated quantitative assessment for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2006 Sep;13(5):642-51.
  34. Rangarajan V, Chacko SJ, Romano S, Jue J, Jariwala N, Chung J, Farzaneh-Far A. Left ventricular long axis function assessed during cine-cardiovascular magnetic resonance is an independent predictor of adverse cardiac events. J Cardiovasc Magn Reson. 2016 Jun 7;18(1):35.
  35. Diller GP, Kempny A, Liodakis E, Alonso-Gonzalez R, Inuzuka R, Uebing A, Orwat S, Dimopoulos K, Swan L, Li W, Gatzoulis MA, Baumgartner H. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of fallot. Circulation. 2012 May 22;125(20):2440-6.
  36. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014 Jul 1;63(25 Pt A):2751-68.
  37. Russo C, Jin Z, Sera F, Lee ES, Homma S, Rundek T, Elkind MS, Sacco RL, Di Tullio MR. Left ventricular systolic dysfunction by longitudinal strain is an independent predictor of incident atrial fibrillation: a community-based cohort study. Circ Cardiovasc Imaging. 2015 Aug;8(8):e003520.
  38. Korosoglou G, Gitsioudis G, Voss A, Lehrke S, Riedle N, Buss SJ, Zugck C, Giannitsis E, Osman NF, Katus HA. Strain-encoded cardiac magnetic resonance during high-dose dobutamine stress testing for the estimation of cardiac outcomes: comparison to clinical parameters and conventional wall motion readings. J Am Coll Cardiol. 2011 Sep 6;58(11):1140-9.
  39. Buss SJ, Breuninger K, Lehrke S, Voss A, Galuschky C, Lossnitzer D, Andre F, Ehlermann P, Franke J, Taeger T, Frankenstein L, Steen H, Meder B, Giannitsis E, Katus HA, Korosoglou G. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):307-15.