Synthesis and Evaluation of a New Radiolabeled Bombesin Analogue for Diagnosis of GRP Receptor Expressing Tumors

Nourollah Sadeghzadeh (PhD)¹, Mostafa Gandomkar (PhD)², Mohammad Shafiee (MSc)², Mohammad Mazidi (BS)², Mostafa Goudarzi (BS)², Seyed Hassan Mirfallah (BS)², Seyed Esmaeil Sadat Ebrahimi (PhD)³

¹Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, ²Nuclear Science Research School, Nuclear Science & Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, ³Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

(Received 1 November 2008, Revised 29 February 2009, Accepted 6 March 2009)

ABSTRACT

Introduction: Bombesin (BN), a 14-amino acid neuropeptide, shows high affinity for the human GRP (gastrin releasing peptide) receptors, which are overexpressed by a variety of cancers, including prostate, breast, pancreas, gastrointestinal, and small cell lung cancer. Aim was to prepare [6-hydrazinopyridine-3-carboxylic acid (HYNIC⁰), D-Tyr⁶, D-Trp⁸] - BN [6-14] NH₂ that could be easily labeled with ^{99m}Tc and evaluation of its potential as an imaging agent.

Methods: Synthesis of the peptide amide was carried out onto Rink Amide MBHA (4-Methylbenzhydrylamine) resin. A bifunctional chelating agent (BFCA) was attached to the N terminal peptide in solid-phase. ^{99m}Tc labeling was performed by addition of sodium pertechnetate to solution that include [HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂, tricine, ethylenediamine-N,N'-diacetic acid (EDDA) and SnCl₂. Radiochemical evaluation was carried out by reverse phase high-performance liquid chromatography (HPLC) and instant thin layer chromatography (ITLC). In-vitro internalization was tested using human prostate cancer cells (PC-3) with blocked and non-blocked receptors. Biodistribution was determined in rats.

Results: [99mTc/tricine/EDDA-HYNIC⁰, D-Tyr⁶, D-Trp⁸] bombesin [6-14] NH₂ was obtained with radiochemical purities >98%. Results of in-vitro studies demonstrated a high stability in serum and suitable internalization. Biodistribution data showed a rapid blood clearance, with renal excretion and specific binding towards GRP receptor-positive tissues such as pancreas.

Conclusion: In this study, labeling of this novel conjugate with ^{99m}Tc easily was performed using coligand. The prepared ^{99m}Tc-HYNIC-BN conjugate has promising characteristics for the diagnosis of malignant tumors.

Key words: Bombesin, 99mTc, Tumor, HYNIC

Iran J Nucl Med 2009; 17(1): 18-26

Corresponding author: Dr Mostafa Gandomkar, Nuclear Science Research School, Nuclear Science & Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, North Karegar Ave, P.O. Box 11365-3486, Tehran, Iran. E-mail: mgandomkar@aeoi.org.ir

INTRODUCTION

Bombesin is a tetradecapeptide, originally isolated from the skin of the amphibian Bambino orientalis (1). Bombesin has been found to have very high-affinity for GRP receptors (2). Furthermore, over-expression of receptors for both BN and GRP have been reported to be found on the cell surfaces of several malignant tissues, particularly in the cases of lung cancer, colon cancer, prostate cancer and breast cancer (3, 4). Many types of labeled BN analogues have been developed evaluation of GRP receptor expressing tumors (5, 6). It has been shown that 7-14 amino acid sequence of BN with amidated c-terminus is necessary for receptor binding affinity and n-terminal of peptide can be used for labeling (7). Therefore, most radiolabeled BN analogues are based on 7-14 amino acid sequence, coupled with a chelator through a spacer group at the Nterminus of the peptide (8, 9). For example different conjugates were developed using bifunctional chelatores for ^{99m}Tc labeling, such as N₃S (triamidethiol) (10, 11), N₄ (tetraamine) (12, 13), HYNIC (14, 15), and carbonyl (16). Some 99mTc-labeled peptides are currently being investigated in gastrin releasing peptide receptor positive tumors in patients (17, 18).

Recently a synthetic analog of BN/GRP, (D-Tyr6, b-Ala11, Phe13, Nle14-NH2) BN [6-14], which possess high affinity to each of the three classes of mammalian BN/GRP receptors and functions as a universal ligand for all the three mammalian BN/GRP receptors, has been developed (19). In all works done in this topic, the main focus was on the type of chelate, spacer group and introduction of other amino acids, which may influence the binding affinity and pharmacokinetics of conjugate. To create a new ^{99m}Tc-labelled peptide for tumor targeting we choosed a BN [7-14] and a D-Tyr⁶ as a spacer based on the above universal ligand also in order to improve excretion pattern via kidney. We also modified D-Trp⁸ versus L-Trp⁸ to decrease enzymatic metabolism (20).

We herein report the synthesis and ^{99m}Tc-radiolabeling of [HYNIC⁰, D-Tyr⁶, D-Trp⁸] - Bombesin [6-14] NH₂ using coligand Tricine/EDDA. In addition we studied stability in human serum, internalization in PC-3 cells and the in vivo biodistribution of the radiolabeled peptide in rat.

METHODS

All chemicals were obtained from commercial sources and used without additional purification. Rink Amide MBHA resin and all of the Fmoc-protected amino acids were commercially available from NovaBiochem (Laufelfingen, Switzerland). prochelator **HYNIC-Boc** synthesized according to Abrams et al (21). Sodium pertechnetate (Na^{99m}TcO₄) was obtained from commercial ⁹⁹Mo/^{99m}Tc Generator (Radioisotope Division, AEOI). PC-3 cell line was obtained from Pasteur Institute of Iran and RPMI medium from Gibco®.

Analytical reverse-phase high-performance liquid chromatography (RP-HPLC) was performed on a JASCO 880-PU intelligent pump HPLC system equipped with a multiwavelength detector and a flowthrough Raytest-Gabi y-detector. CC250/4.6 120-5C18 Nucleosil column from Teknokroma was used for analytical HPLC, and a VP250/10 Nucleosil 100-5 C18 column was used for semipreparative HPLC. The gradient systems consisted of 0.1% trifluoroacetic acid/water (Solvent A) and acetonitrile (Solvent B). For analytic HPLC, Gradient I was used: 0 min 95% A (5% B), 5 min95% A (5% B), 20min 0% A (100% B), 23 min 0% A (100% B), 25 min 95% A (5% B), 35 min 95% A (5% B) ml/min, $\lambda = 280$ nm flow=1for semipreparative HPLC Gradient II: 0 min 80% A (20% B), 2 min 80% A (20% B), 17 min 50% A (50% B), 19 min 0% A (100% B), 21 min 0% A (100% B), 24 min 80% A (20% B), 32 min 80% A (20% B), flow=2

ml/min, λ=280 nm. Liquid Chromatography /Mass Spectrometry (LC/MS) and ¹H NMR (nuclear magnetic resonance) were carried out to determine the molecular constitution and to identify of the [HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂ conjugate.

Synthesis

Synthesis of the peptide amide was carried out by using a-fluorenylmethoxycarbonyl (Fmoc) amino acids, onto Rink Amide resin (substitution, 0. 69 mmol/g) following the method of Fmoc solid phase peptide synthesis. Coupling of each amino acid was performed in the presence of 3 mol excess of Fmoc-amino acid, 3 mol excess of Nhydroxybenzotriazole (HOBT), excess of Diisopropylcarbodiimide (DIC) and 5 mol excess of diisopropyletylamine (DIPEA) in Dimethylformamide (DMF). Coupling success was checked by the established 2, 4, 6trinitrobenzenesulfonicacid (TNBS) test. After suspending a few resin in DMF one drop of solution containing 10% DIPEA and 1% TNBS in DMF was added. A positive test was indicated by red beads (22). Removing of Fmoc group was achieved by repetitive treatment with 20% piperidine in DMF.

Coupling of HYNIC to peptide was performed in the presence of 1.2 mol excess of HYNIC-BOC 2.5 mol excess of (2-(7-Aza-1H-benzotriazole-1-yl)-1, 1, 3, hexafluorophosphate) tetramethyluronium (HATU), mol excess of diisopropyletylamine (DIPEA) in Dimethylformamide (DMF). Coupling success was checked by TNBS test. The peptide HYNIC conjugate was removed from the resin and amino acid side chains were deprotected by treatment with a cocktail of trifluoro acetic acid (TFA), water and triisopropylsilan. After removing the organic solvents, the crude product was precipitated with cold diethyl ether.

Analyses of peptide HYNIC conjugate

The crude peptide HYNIC conjugate was dissolved in water and purified by semi-preparative (Gradient II) RP-HPLC; next the purified product was characterized by LC/MS, ¹H NMR and UV. ¹H NMR spectrum was obtained on bruker 500MHz NMR spectrometer using D₂O as a solvent. Mass spectrum was recorded on an Agilent 1100/ Bruker Daltonic (Ion trap) VL instrument (LC/MS).

Labeling and Radiochemical Evaluation

20 μg of [HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂, 15 mg of tricine, and 5 mg of EDDA were added to a vial containing 0.5 mL of water. 40 µg SnCl₂ (20 μl of 2 mg/ml SnCl₂, 2H₂O in nitrogenpurged 0.1 M HCl) was added to vial. Finally, 0.5 mL of 370-1300 MBq of Na^{99m}TcO₄ in saline was added to the solution. The vial was heated for 10 minutes in a water bath at 100 °C and cooled to room temperature. After cooling to the labeled peptide temperature, analyzed by analytical RP-HPLC (Gradient I) and ITLC on silica gel 60 (Merck) using different mobile phases: 2-butanone for free $^{99\text{m}}$ TcO₄ (R_f =1), 0.1 M sodium citrate (pH 5) to determine the non-peptidebound ^{99m}Tc coligand with $^{99}\text{m}\text{TcO}_4$ (R_f =1) and methanol/1M ammonium acetate 1/1 for 99 mTc colloid ($R_f = 0$).

Serum stability

A volume of 50 µl of the labelled peptide solution was incubated at 37°C with 1ml of fresh human serum. Radiochemical stability was determined taking samples of 10 µl at different times to 24 h for analysis by ITLC.

Internalization

PC-3 cells (1×10⁶ per well in 6-well plates) supplied with fresh medium were washed once with 2 ml of internalization medium (RPMI with %1 FBS). Furthermore, 1.5 ml internalization medium was added to each well, and the plates were incubated at 37°C for about 1 h. Afterward, about 150 kBq (2.5

pmol total peptide mass per well) was added to the medium, and the cells were incubated at 37°C for various time periods. To determine nonspecific membrane binding and internalization, we incubated cells with the radioligand in the presence of 150 µl, 1 umol cold peptide. The cellular uptake was stopped at appropriate time periods (1 h, 2 h and 4 h) by removing medium from the cells and washing twice with 1 ml of ice-cold phosphate-buffered saline (PBS). An acid wash for 10 min with a glycine buffer (pH 2.8) on ice was also performed twice. This step was to distinguish between membranebound (acid releasable) and internalized (acid resistant) radioligand. Finally, the cells were treated with 1 N NaOH. The culture medium and the receptor-bound internalized fractions were measured radiometrically in a gamma counter.

Biodistribution

Animal experiments were performed in compliance with the regulations of nuclear science & technology research institute and with generally accepted guidelines governing such work. Six rats were injected with 20 MBq (0.35 nmol) 99mTc-peptide diluted in saline (total injected volume = 150 μL) into the femoral vein. In order to determine the non-specific uptake of the radiopeptides, in receptor-positive organs, a group of 3 animals were injected with 100 μg cold peptide in 50 μL saline as a coinjection with the radipeptides (blocked animals). After 4 h, the rats in groups of 3 animals were scarified, organs of interest were collected, weighed and radioactivity was measured in a gamma-counter. The percentage of the injected dose per gram (%ID/g) was calculated for each tissue.

Statistical analyses

The calculations of means and standard deviations for internalization and biodistribution were performed on Microsoft Excel. Student's *t* test was used to determine statistical significance. Differences at the

95% confidence level (p<0.05) were considered significant.

RESULTS AND DISCUSSION

The peptide HYNIC conjugate was prepared by Fmoc solid phase synthesis with an overall yield of 48% (Fig. 1). It was purified by RP-HPLC, yielding a highly pure final product, as characterized by analytical RP-HPLC as a single peak in retention time of 18.47 min (Fig. 2).

¹H chemicals shifts were obtained from NMR measurement for peptide HYNIC conjugate: Met (α H=4.52, β H=2.15, 2.01 $\gamma CH_2 = 2.64$, 2.64 $\varepsilon CH_3 = 2.13),$ Leu 1.65 $(\alpha H = 4.38,$ β H=1.65, $\gamma CH_2 = 1.64$ $\delta CH_3 = 0.94$, 0.90), His ($\alpha H = 4.63$, $\beta H = 3.26$, 3.20, γ CH₂=2.64, 2.64, 2H=8.12, 4H=7.14), Gly (α H=3.97), Val (α H=4.18, β H=2.13, $\gamma CH_2 = 0.97, 0.94$), Ala ($\alpha H = 4.35, \beta H = 1.39$), Trp (α H=4.70, β H=3.32, 3.19, 2H=7.24, 4H=7.65, 5H=7.17, 6H=7.24, 7H=7.5), Gln $(\alpha H = 4.37, \beta H = 2.13, 2.01, \gamma CH_2 = 2.38,$ 2.38), Tyr (α H=4.60, β H=3.13, 2.92, 2, 6 H=7.15, 3, 5H=6.86).

The mass analysis of the synthetic molecule indicated that the main peak was related to HYNIC-peptide (m/z =1237.6) which shows half peak in adduction with sodium (m/z = 639.8, [M + K]⁺⁺).

The [99mTc-HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] conjugate with co-ligand including tricine/EDDA was obtained in high radiochemical yield (98.3%) that was stable up to 24 h.. The crude HPLC Chromatographic profile for the 99mTc/tricine/EDDA-HYNIC-BN conjugate produced with retention time 15.34 min is shown in figure 3.

After 24 h incubation in human serum the radiochemical purity remained >90% (Fig. 4). In internalization study, specific uptake of radioligand in PC-3 cell after 1 h was $2.2\% \pm 0.5\%$ which was increased to $10.9\% \pm 1.3\%$ after 4 h. As it shows the significant differences of uptake between blocked and unblocked cells in various time periods are very noticeable (p < 0.05) (Fig. 5).

Figure 1. Representative Structure of [HYNIC⁰, D-Tyr⁶, D-Trp⁸] - Bombesin [6-14] NH₂

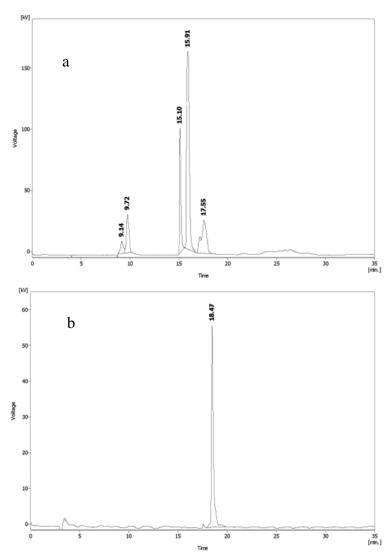


Figure 2. RP-HPLC profile of the [HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂ before (a) and after (b) purification

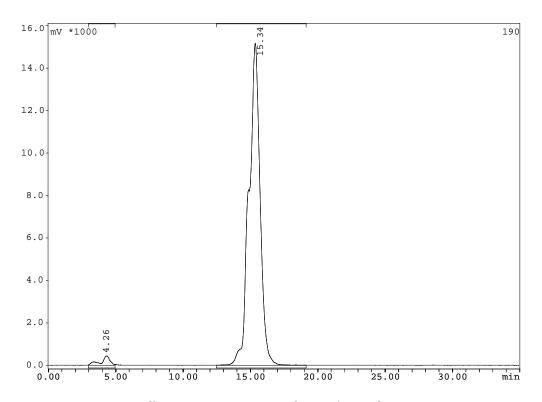


Figure 3. RP-HPLC profile of [99mTc/tricine/EDDA-HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂

The results of biodistribution in rats are summarized in Table 1. The tissue distribution of radioactivity at 4 h after injection exhibited a rapid clearance from the blood and most tissues predominantly by renal excretion. The highest non-specific uptake was found in kidneys. A significant uptake of radioactivity was observed in the pancreas which expresses GRP receptors. The specificity was confirmed by the receptor blocking study in which the previous injection of cold peptide diminished the uptake of activity in pancreas. Reduction uptake percentage was 65% in the pancreas (0.37% ID/g vs. 0.13% ID/g, p < 0.05). The uptake in non-targeted tissues was not significantly reduced by the blocking dose.

We are working to find a new conjugate to be labeled in high yield and in a very short time. It is necessary that the metallic radionuclide be stable under in vivo conditions especially in serum.

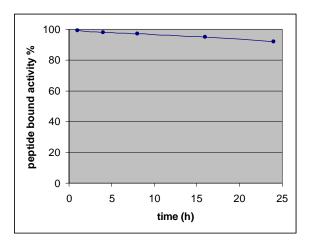
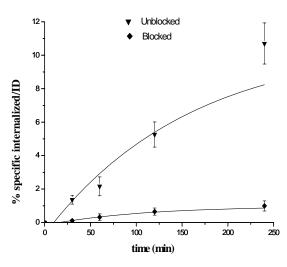



Figure 4. Stability of [99mTc/tricine/EDDA-HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂ in human serum up to 24 h.

Figure Internalization of rate [^{99m}Tc/tricine/EDDA-HYNIC⁰, D-Tyr⁶, D-Trp⁸] Bombesin [6-14] NH₂ into unblocked and blocked PC-3 cells.

Previous studies have indicated that HYNIC acts as a monodentate or bidentate ligand to form a mixed ligand ^{99m}Tc complex in the presence of appropriate coligands (23, 24). The use of coligand allows modification of the hydrophilicity and pharmacokinetics of 99mTc-labeled peptide conjugates. Modified bombesin analogue was prepared and it was easily labeled and its labeling yield was high. The stability of radiopeptide in human serum up to 24 h after its labeling could be attributed to D-Trp substitution instead of L-Trp which in turn may enhance metabolic stability.

Efficient internalization is an important factor for optimization of radiopharmaceutical in targeted diagnostic and radiotherapy in nuclear medicine. The rapidly, easily and specifically internalized radiopeptide in PC-3 cells indicate that D-Tyr⁶ can be a good spacer to reduce the influence of HYNIC moiety in receptor binding affinity and internalization of peptide. Labeling of the peptide with bifunctional chelating agent HYNIC and tricine/EDDA coligands modifies lipophilic and pharmacokinetic properties of peptide, resulted a bombesin analogue with hepatobiliary low clearance and predominantly renal excretion. This is an important result as compared to the most of the ^{99m}Tc-labeled bombesin analogues which have a tendency to accumulate in the liver and intestine because of their high lipophilicity (25, 26). Another important advantage of this work is feasibility to prepare a freeze dried kit formulation for routine clinical use in nuclear medicine.

Table 1. Biodistribution in rats (% injected dose per gram organ \pm SD, n = 3), bl = blocked

Organ	1hrs	4hrs	4hrs bl	24hrs
Blood	0.27 ± 0.05	0.11±0.08	0.12 ± 0.08	0.09 ± 0.04
Bone	0.13 ± 0.02	0.07 ± 0.02	0.09 ± 0.03	0.05 ± 0.02
Kidneys	5.84 ± 1.09	4.96 ± 1.26	5.09±1.11	3.86 ± 0.89
Adrenals	0.58 ± 0.02	0.11 ± 0.08	0.13 ± 0.03	0.95 ± 0.21
Pancrea	1.14 ± 0.11	0.37 ± 0.08	0.13 ± 0.05	0.08 ± 0.04
Spleen	0.16 ± 0.03	0.14 ± 0.05	0.12 ± 0.04	0.82 ± 0.07
Stomach	0.24 ± 0.16	0.09 ± 0.03	0.1 ± 0.04	0.31 ± 0.08
Intestines	4.49 ± 0.46	0.96 ± 0.15	0.88 ± 0.07	0.98 ± 0.03
Liver	0.17 ± 0.08	0.11 ± 0.03	0.13 ± 0.03	0.16 ± 0.02
Lung	0.27 ± 0.05	0.14 ± 0.02	0.13 ± 0.04	0.28 ± 0.08
Heart	0.20 ± 0.01	0.11 ± 0.02	0.12 ± 0.03	0.09 ± 0.03
Muscle	0.08 ± 0.02	0.05 ± 0.01	0.16 ± 0.06	0.02 ± 0.01

CONCLUSION

In this study, labeling of a novel conjugate with ^{99m}Tc was performed using coligand. Reaction time was very short and facile, making this an ideal radiopharmaceutical for clinical studies in nuclear medicine. Furthermore, this conjugate prepared by tricine/EDDA exchange labeling demonstrated excellent radiochemical stability even up to 24 hours post 99mTc-HYNICincubation. The prepared promising conjugate has characteristics for the diagnosis of malignant tumors.

AKNOWLEDGEMENT

The authors wish to thank Mr Talebi of the radioisotope department (AEOI) assistance in quality control tests.

REFERENCES

- 1. Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971; 27(2): 166-167.
- Kroog GS, Jensen RT, Battey JF. Mammalian bombesin receptors. Med Res Rev 1995; 15(5): 389-417.
- Reubi JC, Waser B. Concomitant expression several peptide receptors neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2003; 30(5): 781-793.
- Korner M, Waser B, Reubi JC, Mazzucchelli L, Guillou, L. High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 2004; 31(6): 803-810.
- Van de Wiele C, Dumont F, van Belle S, Slegers G, Peers SH, Dierckx R A. Is there a role for agonist gastrin-releasing peptide receptor radioligands in tumour imaging? Nucl Med Commun 2001; 22(1): 5-15.
- 6. Okarvi Peptide-based SM. radiopharmaceuticals: future tools for diagnostic imaging of cancers and other

- diseases. Med Res Rev 2004; 24(3): 357-397.
- 7. Hoffman TJ, Quinn TP, Volkert WA. Radiometallated receptor-avid conjugates for specific in vivo targeting of cancer cells. Nucl Med Biol 2001; 28(5): 527-539.
- 8. Karra SR, Schibli R, Gali H, Katti KV, Hoffman TJ, Higginbotham C et al. 99mTclabeling and in vivo studies of a bombesin analogue with a novel water-soluble dithiadiphosphine-based bifunctional chelating agent. Bioconjug Chem 1999; 10(2): 254-260.
- Baidoo KE, Lin KS, Zhan Y, Finley P, Scheffel U, Wagner HN Jr. Design, synthesis, and initial evaluation of highaffinity technetium bombesin analogues. Bioconjug Chem 1998; 9(2): 218-225.
- 10. Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G et al. Biodistribution and dosimetry of 99mTc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 2001; 42(11): 1722-1727.
- 11. Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R R, et al. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: feasibility Study. Eur J Nucl Med 2000; 27(11): 1694-1699.
- 12. Nock B, Nikolopoulou A, Chiotellis E, Loudos G, Maintas D, Reubi JC et al. [99mTc] Demobesin 1, a novel potent bombesin analogue for GRP receptortargeted tumour imaging. Eur J Nucl Med Mol Imaging 2003; 30(2): 247-258.
- 13. Maina T, Nock BA, Zhang H, Nikolopoulou A, Waser B, Reubi JC et al. Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-Rtargeting drugs. J Nucl Med 2005; 46(5): 823-830.
- 14. Faintuch BL, Santos RLSR, Souza ALFM, Hoffman TJ, Greeley M, Smith CJ. 99mTc-HYNIC-bombesin [7-14]NH2: Radiochemical evaluationwith co-ligands EDDA (EDDA=ethylenediamine-N, N'diacetic acid), tricine, and nicotinic acid. Synth React Inorg Met-Org Nano-Met Chem 2005; 35(1): 43-51.
- 15. Verbeke K, Kieffer D, Vanderheyden JL, Reutelingsperger C, Steinmetz N, Green A et al. Optimization of the preparation of

- 99mTc-labeled HYNIC-derivatized annexin V for human use. Nucl Med Biol 2003; 30(7): 771-778.
- 16. Smith CJ, Sieckman GL, Owen NK, Hayes DL, Mazuru DG, Kannan R et al. Radiochemical investigations of gastrinreceptor-specific releasing peptide [(99m)Tc(X)(CO)3-Dpr-Ser-Ser-Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = H2O or P(CH2OH)3 Cancer Res 2003; 63(14):4082-4088.
- 17. Santos-Cuevas CL, Ferro-Flores G, Arteaga de Murphy C, Pichardo-Romero PA. Targeted imaging of gastrin-releasing 99mTcpeptide receptors with EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry in women. Nucl Med Comm 2008; 29(8): 741-747.
- 18. Smith CJ, Volkert WA, Hoffman TJ. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 2005; 32(7):733-740.
- 19. Moody TW, Mantey SA, Pradhan TK, Schumann M, Nakagawa T, Martinez A, et Development of high affinity camptothecin-bombesin conjugates that have targeted cytotoxicity for bombesin receptor-containing tumor cells. J Biol Chem 2004; 279(22): 23580-23589.
- 20. Pless J, Bauer W, Briner U, Doepfner W, Marbach P, Maurer R et al. Chemistry and pharmacology of SMS 201-995, a long acting analogue of somatostatin. Scand J Gastroenterol Suppl 1986; 119: 54-64.
- 21. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990; 31(12): 2022-2028.
- 22. Hancock WS, Battersby JE. A new microtest for the detection of incomplete coupling reactions in solid-phase peptide synthesis using 2,4,6-trinitrobenzene-sulphonic acid. Anal Biochem 1976; 71(1): 260-264.
- 23. Babich JW, Fischman AJ. Effect of "Coligand" on the biodistribution of 99mTclabeled hydrazino nicotinic acid derivatized chemotactic peptides. Nucl Med Biol 1995; 22(1): 25-30.
- 24. Decristoforo C, Mather SJ. Technetium-99m somatostatin analogues: effect of labelling

- methods and peptide sequence. Eur J Nucl Med 1999; 26(8): 869-876.
- 25. La Bella R, Garcia-Garayoa E, Langer M, Blauenstein P, Beck-Sickinger AG, Schubiger PA. In vitro and in vivo evaluation of a 99mTc (I)-labeled bombesin analogue for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol 2002; 29(5): 553-560.
- 26. Varvarigou AD, Scopinaro F, Leondiadis L, Corleto V, Schillaci O, De Vincentis G et al. Synthesis, chemical, radiochemical and radiobiological evaluation of a new 99mTclabelled bombesin-like peptide. Cancer Biother Radiopharm 2002; 17(3): 317-326.