Image-based versus atlas-based patient-specific S-value assessment for Samarium-153 EDTMP cancer palliative care: A short study

Document Type : Original Article


1 Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

3 Echocardiography Research Center, Cardiovascular Interventional Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

4 Department of Nuclear Medicine, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

5 Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA


Introduction: Use of SPECT/CT data is the most accurate method for patient-specific internal dosimetry when isotopes emit single gamma rays. The manual or semi-automatic segmentation of organs is a major obstacle that slows down and limits the patient-specific dosimetry. Using digital phantoms that mimic patient’s anatomy can bypass the segmentation step and facilitate the dosimetry process. In this study, the results of a patient-specific dosimetry based on CT data and XCAT phantom, a flexible phantom with predefined organs, are compared.
Methods: The dosimetry results (S-value and SAF) were calculated for a patient with breast cancer who received Samarium-153 ethylenediamine-N,N,N′,N′-tetrakis(methylenephosphonic acid (153Sm-EDTMP). Biodistribution of activity was obtained from the SPECT scan. The anatomical data and attenuation map were extracted from CT as well as the XCAT phantom with different BMIs. GATE Monte-Carlo simulator was used to calculate the dose to different organs based on the activity distribution and segmented anatomy.
Results:The whole body dosimetry results are the same for both calculations based on the CT and XCAT with different BMIs; however for target organs, the differences between SAFs and S-values are high. In the spine, the clinically important target organ for Samarium therapy, the dosimetry results obtained from phantoms with unmatched BMIs between XCAT phantom and CT are substantially different.
Conclusion: We showed that atlas-based dosimetry using XCAT phantom even with matched BMI may lead to considerable errors as compared to calculations based on patient’s own CT. For accurate dosimetry results, calculations should be done using CT data.


Main Subjects

  1. Grimes J, Celler A, Birkenfeld B, Shcherbinin S, Listewnik MH, Piwowarska-Bilska H, Mikolajczak R, Zorga P. Patient-specific radiation dosimetry of 99mTc-HYNIC-Tyr3-octreotide in neuroendocrine tumors. J Nucl Med. 2011 Sep;52(9):1474-81.
  2. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, McNamara S, Schwartz L, Larson SM. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med. 1997 Feb;38(2):301-8.
  3. Saeedzadeh E, Sarkar S, Abbaspour Tehrani-Fard A, Ay MR, Khosravi HR, Loudos G. 3D calculation of absorbed dose for 131I-targeted radiotherapy: a Monte Carlo study. Radiat Prot Dosimetry. 2012 Jul;150(3):298-305.
  4. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 2004 Aug;45(8):1366-72.
  5. Tsougos I, Loudos G, Georgoulias P, Theodorou K, Kappas C. Patient-specific internal radionuclide dosimetry. Nucl Med Commun. 2010 Feb;31(2):97-106.
  6. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012 Aug;53(8):1310-25.
  7. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, Scheidhauer K, Wester HJ, Rummeny EJ, Schwaiger M, Drzezga A. SPECT/CT. J Nucl Med. 2008 Aug;49(8):1305-19.
  8. Dewaraja YK, Wilderman SJ, Koral KF, Kaminski MS, Avram AM. Use of integrated SPECT/CT imaging for tumor dosimetry in I-131 radioimmunotherapy: a pilot patient study. Cancer Biother Radiopharm. 2009 Aug;24(4):417-26.
  9. Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010 Sep;37(9):4902-15.
  10. Bauman G, Charette M, Reid R, Sathya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005 Jun;75(3):258-70.
  11. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore PF, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira JM, Visvikis D, Van de Walle R, Wieërs E, Morel C. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004 Oct 7;49(19):4543-61.
  12. Strulab D, Santin G, Lazaro D, Breton V, Morel C. GATE (geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform. Nucl Phys B Proc Suppl. 2003;125:75-79.
  13. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, Frisson T, Grevillot L, Guigues L, Maigne L, Morel C, Perrot Y, Rehfeld N, Sarrut D, Schaart DR, Stute S, Pietrzyk U, Visvikis D, Zahra N, Buvat I. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011 Feb 21;56(4):881-901.
  14. Taschereau R, Chow PL, Cho JS, Chatziioannou AF. A microCT X-ray head model for spectra generation with Monte Carlo simulations. Nucl Instrum Methods Phys Res A. 2006;569(2):373-377.
  15. Parach AA, Rajabi H. A comparison between GATE4 results and MCNP4B published data for internal radiation dosimetry. Nuklearmedizin. 2011;50(3):122-133.
  16. Visvikis D, Bardies M, Chiavassa S, Danford C, Kirov A, Lamare F, Maigne L, Staelens S, Taschereau R. Use of the GATE Monte Carlo package for dosimetry applications. Nucl Instrum Methods Phys Res A. 2006;569(2):335-340.
  17. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Zschiesche D. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506(3):250-303.
  18. Song Y, Luboz V, Din N, King D, Gould D, Bello F, Bulpitt A. Segmentation of 3D vasculatures for interventional radiology simulation. Stud Health Technol Inform. 2011;163:599-605.
  19. Fallahpoor M, Abbasi M, Sen A, Parach A, Kalantari F. SU‐C‐201‐06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153‐Samarium with GATE Monte Carlo Package. Med Phys. 2015;42(6):3203.
  20. Parach AA, Rajabi H, Askari MA. Paired organs-should they be treated jointly or separately in internal dosimetry? Med Phys. 2011 Oct;38(10):5509-21.
  21. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York: Society of Nuclear Medicine; 1988.
  22. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J Nucl Med. 2009 Mar;50(3):477-84.
  23. American Association of Physicists in Medicine. Physical aspects of quality assurance in radiation therapy. New York: American Institute of Physics; 1994.
  24. O'Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995 Oct;36(10):1902-9.
  25. Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM, Loudos G, Maigne L, Marcatili S, Mauxion T, Papadimitroulas P, Perrot Y, Pietrzyk U, Robert C, Schaart DR, Visvikis D, Buvat I. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014 Jun;41(6):064301.
  26. Díaz-Londoño G, García-Pareja S, Salvat F, Lallena AM. Monte Carlo calculation of specific absorbed fractions: variance reduction techniques. Phys Med Biol. 2015 Apr 7;60(7):2625-44.
  27. Fallahpoor M, Abbasi M, Kalantari F, Parach AA, Sen A. Practical Nuclear Medicine and Utility of Phantoms for Internal Dosimetry: XCAT Compared with Zubal. Radiat Prot Dosimetry. 2017 Apr 25;174(2):191-197.
  28. Fallahpoor M, Abbasi M, Parach AA, Kalantari F. Internal dosimetry for radioembolization therapy with Yttrium-90 microspheres. J Appl Clin Med Phys. 2017 Mar;18(2):176-180.
  29. Fallahpoor M, Abbasi M, Parach AA, Kalantari F. The importance of BMI in dosimetry of 153Sm-EDTMP bone pain palliation therapy: A Monte Carlo study. Appl Radiat Isot. 2017 Jun;124:1-6.