The Role of 1H-MRS and [18F]FDG PET/CT in differentiating primary squamous cell carcinoma and metastatic Hodgkin's lymphoma in lung: An experimental pilot study

Document Type : Original Article

Authors

1 Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Fintech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

3 Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

4 Cardiovascular Interventional Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

5 Nuclear Medicine Department, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran

6 Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

7 Hazrat-e Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran

8 Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Distinguishing the cellular origin of lung cancer is essential for tailored patient care. This pioneering pilot study explores the synergy of 1H-Magnetic Resonance Spectroscopy (1H-MRS) and 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) in the differentiation of primary squamous cell carcinoma (SCC) of the lung from Hodgkin's lymphoma (HL) metastases.
Methods: Ethically approved, the study enrolled 21 participants with confirmed lung lesions (10 SCC, 11 HL). [18F]FDG PET/CT and 1H-MRS were conducted, and analyses were performed to assess diagnostic potential.
Results: Significant differences in [18F]FDG PET/CT parameters (SUV max BSA, SUV max LBM, and ID%) between SCC and HL were observed. Metabolite concentrations (Cho, Lac, Cr) from 1H-MRS also exhibited distinctions. Correlations between PET values and metabolite concentrations hinted at links between glucose metabolism and molecular composition. Conclusion: This study presents an innovative approach, integrating 1H-MRS and [18F]FDG PET/CT to distinguish primary from metastatic lung lesions. The results hold promise for improving non-invasive diagnostic accuracy and guiding targeted therapies. Future research should validate these findings and explore the potential for clinical integration.

Keywords

Main Subjects


  1. Crow J, Slavin G, Kreel L. Pulmonary metastasis: a pathologic and radiologic study. Cancer. 1981;47(11):2595-602.
  2. Lee KS, Kim Y, Primack SL. Imaging of pulmonary lymphomas. AJR Am J Roentgenol. 1997 Feb;168(2):339-45.
  3. Lorigan P, Radford J, Howell A, Thatcher N. Lung cancer after treatment for Hodgkin's lymphoma: a systematic review. Lancet Oncol. 2005 Oct;6(10):773-9.
  4. Fisseler-Eckhoff A, Müller KM. Differentialdiagnose primärer Lungentumoren und pulmonaler Metastasen [Differential diagnosis of primary lung tumors and pulmonary metastases]. Verh Dtsch Ges Pathol. 2000;84:106-17.
  5. Zhang Y, Shi L, Simoff MJ, J Wagner O, Lavin J. Biopsy frequency and complications among lung cancer patients in the United States. Lung Cancer Manag. 2020 Aug 17;9(4):LMT40.
  6. Vachani A, Zhou M, Ghosh S, Zhang S, Szapary P, Gaurav D, Kalsekar I. Complications after transthoracic needle biopsy of pulmonary nodules: a population-level retrospective cohort analysis. J Am Coll Radiol. 2022 Oct;19(10):1121-9.
  7. Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, Van Schil PE, van Meerbeeck JP, Parizel PM. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018 Feb;9(1):73-86.
  8. Christensen JA, Nathan MA, Mullan BP, Hartman TE, Swensen SJ, Lowe VJ. Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol. 2006 Nov;187(5):1361-7.
  9. Groheux D, Quere G, Blanc E, Lemarignier C, Vercellino L, de Margerie-Mellon C, Merlet P, Querellou S. FDG PET-CT for solitary pulmonary nodule and lung cancer: Literature review. Diagn Interv Imaging. 2016 Oct;97(10):1003-1017.
  10. Ghossein J, Gingras S, Zeng W. Differentiating primary from secondary lung cancer with FDG PET/CT and extra-pulmonary tumor grade. J Med Imaging Radiat Sci. 2023 Sep;54(3):451-456.
  11. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G. Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology. 1992 Jun;183(3):701-9.
  12. Kannampuzha S, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Murali R, Namachivayam A, Renu K, Dey A, Vellingiri B, Madhyastha H, Ganesan R. A Systematic role of metabolomics, metabolic pathways, and chemical metabolism in lung cancer. Vaccines (Basel). 2023 Feb 7;11(2):381.
  13. Madama D, Martins R, Pires AS, Botelho MF, Alves MG, Abrantes AM, Cordeiro CR. Metabolomic profiling in lung cancer: a systematic review. Metabolites. 2021 Sep 17;11(9):630. 
  14. Liang S, Cao X, Wang Y, Leng P, Wen X, Xie G, Luo H, Yu R. Metabolomics analysis and diagnosis of lung cancer: insights from diverse sample types. Int J Med Sci. 2024 Jan 1;21(2):234-52.
  15. Mountford CE, Doran S, Lean CL, Russell P. Proton MRS can determine the pathology of human cancers with a high level of accuracy. Chem Rev. 2004 Aug;104(8):3677-704.
  16. Panebianco V, Giove F, Barchetti F, Podo F, Passariello R. High-field PET/MRI and MRS: potential clinical and research applications. Clin Transl Imaging. 2013;1(1):17-29.
  17. Panigrahy A, Nelson MD Jr, Blüml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010 Jan;40(1):3-30.
  18. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol. 2006 Aug;27(7):1404-11.
  19. Holalkere N, Hochberg EP, Takvorian R, Blake M, Toomey C, Michaelson J, Rahemtullah A, Abramson JS. Intensity of FDG uptake on PET scan varies by histologic subtype of hodgkin lymphoma. Blood. 2007;110(11):4393.
  20. Li H, Wang X, Zhang L, Yi X, Qiao Y, Jin Q. Correlations between maximum standardized uptake value measured via 18F-fluorodeoxyglucose positron emission tomography/computed tomography and clinical variables and biochemical indicators in adult lymphoma. J Cancer Res Ther. 2019;15(7):1581-8.
  21. Dijkman BG, Schuurbiers OC, Vriens D, Looijen-Salamon M, Bussink J, Timmer-Bonte JN, Snoeren MM, Oyen WJ, van der Heijden HF, de Geus-Oei LF. The role of (18)F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours. Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2037-47.
  22. Fujimoto S, Minato K, Horikoshi H, Suga S, Sato M, Mashimo K, Onozato R, Fujita A. Proton magnetic resonance spectroscopy of lung cancer in vivo. Radiol Case Rep. 2020 May 22;15(7):1099-102.
  23. Csutak C, Ștefan PA, Lenghel LM, Moroșanu CO, Lupean RA, Șimonca L, Mihu CM, Lebovici A. Differentiating high-grade gliomas from brain metastases at magnetic resonance: the role of texture analysis of the peritumoral zone. Brain Sci. 2020 Sep 16;10(9):638. 
  24. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002 Mar;222(3):715-21.
  25. Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol. 2001;11(9):1784-91.