The latest findings of gamma irradiation of blood products to prevent transfusion-associated graft-versus-host disease (TA-GVHD) in cancer patients: A systematic review

Document Type : Systematic Review/Meta-analysis

Authors

1 Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran

2 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Immunology Research Center, Iran University of Medical Science, Tehran, Iran

4 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

6 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Blood products including RBC, platelets and plasma are used for the treatment of different diseases, especially in cancer patients. Administration of these derivatives may be associated with a wide range of adverse effects. Transfusion-associated graft-versus-host disease (TA-GVHD) is a fatal complication resulting from blood transfusion. Currently, irradiation of blood products containing cells, which can be achieved using X-ray or gamma ray, represents an optimal approach to prevent TA-GVHD. To the best of our knowledge, this is the first systematic review to address studies conducted to evaluate the effects of gamma irradiation from different sources of 60Co and 137Cs on the laboratory quality of platelets (PCs) and red blood cell concentrates (RBCCs). The results of our review on pre-storage (day 0) gamma irradiation of platelet products (apheresis and PRP) for 7 days of follow-up showed that there was no significant difference between non-irradiated and pre-storage 137Cs-irradiated PCs. In addition, 60Co-irradiated PRP before storage also showed comparable results to their non-irradiated counterparts. Results of our retrospective study on pre-storage (day 0) gamma irradiation of red blood cell concentrates (RBCCs) products for 28 days of follow-up, demonstrated that the viability of CPDA-1-preserved RBCCs appears to be 14 days post-irradiation, while this period for SAGM-preserved RBCCs is up to 21 days. Preservation of irradiated red blood cells in mannitol-containing solutions reduces lipid peroxidation. Overall, the results if our study showed that irradiation time and storage conditions, including preparation methods, anticoagulant/additive solutions, filtration, and washing, affect the quality of transfused blood products.

Keywords

Main Subjects


  1. Basu D, Kulkarni R. Overview of blood components and their preparation. Indian J Anaesth. 2014 Sep;58(5):529-37.
  2. Zadeh Mehrizi T. Assessment of the effect of polymeric nanoparticles on storage and stability of blood products (red blood cells, plasma, and platelet). Polym Bull. 2022 Mar; 80(30):1-36.
  3. Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol. 2022 Feb 1;74(2):179-90.
  4. Mehrizi TZ, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Res. 2021 Dec 31;56(4):215-28.
  5. Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int Nano Lett. 2022;12(1):15-45.
  6. Zadeh Mehrizi T, Shafiee Ardestani M. Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011-2021. Prog Biomater. 2022 Jun;11(2):137-61.
  7. Mehrizi TZ, Ardestani MS. The introduction of dendrimers as a new approach to improve the performance and quality of various blood products (platelets, plasma and erythrocytes): a 2010-2022 review study. Curr Nanosci. 2023;19(1):103-22.
  8. Mehrizi TZ, Ardestani MS, Kafiabad SA. A review of the use of metallic nanoparticles as a novel approach for overcoming the stability challenges of blood products: a narrative review from 2011-2021. Curr Drug Deliv. 2023;20(3):261-80.
  9. Zadeh Mehrizi T, Shafiee Ardestani M, Rezayat SM, Javanmard A. A review study of the use of modified chitosan as a new approach to increase the preservation of blood products (erythrocytes, platelets, and plasma products): 2010-2022. Nanomed J. 2023;10(1):16-32.
  10. Mehrizi TZ, Ardestani MS, Kafiabad SA. A review study of the influences of dendrimer nanoparticles on stored platelet in order to treat patients (2001-2020). Curr Nanosci. 2022;18(3):304-18.
  11. Mehrizi TZ, Ardestani MS, Molla Hoseini MH, Khamesipour A, Mosaffa N, Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond). 2018 Dec;13(24):3129-47. 
  12. Refaai MA, Phipps RP, Spinelli SL, Blumberg N. Platelet transfusions: impact on hemostasis, thrombosis, inflammation and clinical outcomes. Thromb Res. 2011 Apr;127(4):287-91.
  13. Sparrow RL. Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 2010 Jun;8 Suppl 3(Suppl 3):s26-30.
  14. Mehrizi TZ. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: a recent review study. Nano. 2021 Jul;16(08):2130007.
  15. Mehrizi TZ. An Overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020. Curr Mol Med. 2022;22(6):524-39. 
  16. Mehrizi TZ. Impact of metallic, quantum dots and carbon-based nanoparticles on quality and storage of albumin products for clinical use. Nano. 2021;16(14):2130013.
  17. Zadeh Mehrizi T, Mousavi Hosseini K. An overview on the investigation of nanomaterials' effect on plasma components: immunoglobulins and coagulation factor VIII, 2010-2020 review. Nanoscale Adv. 2021 May 18;3(13):3730-45.
  18. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney. Sci Rep. 2018 Aug 6;8(1):11759.
  19. Mintz PD, Wehrli G. Irradiation eradication and pathogen reduction. Ceasing cesium irradiation of blood products. Bone Marrow Transplant. 2009 Aug;44(4):205-11.
  20. Mehrizi TZ, Ardestani MS, Khamesipour A, Hoseini MHM, Mosaffa N, Anissian A, Ramezani A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J Mater Sci Mater Med. 2018 Jul 28;29(8):125.
  21. Fast LD. Recipient CD8+ cells are responsible for the rapid elimination of allogeneic donor lymphoid cells. J Immunol. 1996 Dec 1;157(11):4805-10. 
  22. Fast LD. Recipient elimination of allogeneic lymphoid cells: donor CD4(+) cells are effective alloantigen-presenting cells. Blood. 2000 Aug 1;96(3):1144-9.
  23. Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, Ebrahimi Shahmabadi H, Haji Molla Hoseini M, Mosaffa N, Ramezani A. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019 Sep 24;14:7593-607. 
  24. Manduzio P. Transfusion-associated graft-versus-host disease: A concise review. Hematol Rep. 2018 Nov 6;10(4):7724. 
  25. Zadeh Mehrizi T, Mosaffa N, Shafiee Ardestani M, Khamesipour A, Ebrahimi Shahmabadi H, Pirali Hamedani M, Mardani Dashti Y, Ramezani A. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch Clin Infec Dis. 2018;13(5):e80314.
  26. Bahar B, Tormey CA. Prevention of transfusion-associated graft-versus-host disease with blood product irradiation: the past, present, and future. Arch Pathol Lab Med. 2018 May;142(5):662-7. 
  27. Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, Mirzaei M, Shafiee Ardestani M, Haji Molla Hoseini M, Mosaffa N, Khamesipour A, Javanmard A, Rezazadeh S, Ramezani A. Effective materials of medicinal plants for leishmania treatment in vivo environment. J Med Plants. 2020 Jun 10;19(74):39-62.
  28. Zadeh Mehrizi T, Mosaffa N, Khamesipour A, Haji Molla Hoseini M, Ebrahimi Shahmabadi H, Shafiee Ardestani M, Ramezani A. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic globular dendrimer. J  Nanostruct. 2020;11(1):143-52.
  29. Tobian A. Transfusion-associated graft-versus-host disease. Available from: https://www.uptodate.com/contents/transfusion-associated-graft-versus-host-disease
  30. Zadeh Mehrizi T, Shafiee Ardestani M, Mirzaei M, Javanmard A. A review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins. Nanomed J. 2022;9(4):261-72.
  31. Schlenke P, Hagenah W, Irsch J, Sundin D, Corash L, Lin L, Kirchner H, Wagner T. Safety and clinical efficacy of platelet components prepared with pathogen inactivation in routine use for thrombocytopenic patients. Ann Hematol. 2011 Dec;90(12):1457-65.
  32. Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host disease. BCSH Blood Transfusion Task Force. Transfus Med. 1996 Sep;6(3):261-71. 
  33. Mehrizi TZ, Ardestani MS. therapeutic application of nanoparticles in hepatitis diseases: a narrative review (2011-2021). Curr Pharm Biotechnol. 2023;24(5):611-32.
  34. Moroff G, Luban NL. The irradiation of blood and blood components to prevent graft-versus-host disease: technical issues and guidelines. Transfus Med Rev. 1997 Jan;11(1):15-26.
  35. Davey RJ. The effect of irradiation on blood components. In: Baldwin ML and Jefferies LC (eds). Irradiation of Blood Components, Bethesda: American Association of Blood Banks; 1992. p. 51-62.
  36. Mehrizi TZ, Mirzaei M, Ardestani MS. Pegylation, a successful strategy to address the storage and instability problems of blood products: review 2011-2021. Curr Pharm Biotechnol. 2024;25(3):247-67.
  37. Ramirez AM, Woodfield DG, Scott R, McLachlan J. High potassium levels in stored irradiated blood. Transfusion. 1987 Sep-Oct;27(5):444-5. 
  38. Shahabi J, Shahmabadi HE, Alavi SE, Movahedi F, Esfahani MK, Mehrizi TZ, Akbarzadeh A. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J Clin Biochem. 2014 Jul;29(3):315-20. 
  39. Fatemeh DR, Ebrahimi Shahmabadi H, Abedi A, Alavi SE, Movahedi F, Koohi Moftakhari Esfahani M, Zadeh Mehrizi T, Akbarzadeh A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J Clin Biochem. 2014 Jul;29(3):333-8.
  40. de Oliveira GC, Maia GA, Cortes VF, Santos Hde L, Moreira LM, Barbosa LA. The effect of γ-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation. Ann Hematol. 2013 Jul;92(7):899-906.
  41. Sprent J, Anderson RE, Miller JF. Radiosensitivity of T and B lymphocytes. II. Effect of irradiation on response of T cells to alloantigens. Eur J Immunol. 1974 Mar;4(3):204-10. 
  42. Button LN, DeWolf WC, Newburger PE, Jacobson MS, Kevy SV. The effects of irradiation on blood components. Transfusion. 1981 Jul-Aug;21(4):419-26.
  43. Valerius NH, Johansen KS, Nielsen OS, Platz P, Rosenkvist J, Sørensen H. Effect of in vitro X-irradiation on lymphocyte and granulocyte function. Scand J Haematol. 1981 Jul;27(1):9-18. 
  44. Góes EG, Borges JC, Covas DT, Orellana MD, Palma PV, Morais FR, Pelá CA. Quality control of blood irradiation: determination T cells radiosensitivity to cobalt-60 gamma rays. Transfusion. 2006 Jan;46(1):34-40.
  45. Adams F, Bellairs G, Bird AR, Oguntibeju OO. Biochemical storage lesions occurring in nonirradiated and irradiated red blood cells: a brief review. Biomed Res Int. 2015;2015:968302.
  46. Blasi B, D'Alessandro A, Ramundo N, Zolla L. Red blood cell storage and cell morphology. Transfus Med. 2012 Apr;22(2):90-6. 
  47. Ng MSY, Tung JP, Fraser JF. Platelet storage lesions: what more do we know now? Transfus Med Rev. 2018 Apr 17:S0887-7963(17)30189-X.
  48. Mehrizi TZ, Rezayat SM, Ardestani MS, Shahmabadi HE, Ramezani A. A review study about the effect of chitosan nanocarrier on improving the efficacy of amphotericin b in the treatment of leishmania from 2010 to 2020. Curr Drug Deliv. 2021;18(9):1234-43. 
  49. Murphy S, Sayar SN, Gardner FH. Storage of platelet concentrates at 22 degrees C. Blood. 1970 Apr;35(4):549-57. 
  50. Snyder EL, Koerner TA Jr, Kakaiya R, Moore P, Kiraly T. Effect of mode of agitation on storage of platelet concentrates in PL-732 containers for 5 days. Vox Sang. 1983;44(5):300-4.
  51. Apelseth TO, Hervig TA, Wentzel-Larsen T, Bruserud O. Cytokine accumulation in photochemically treated and gamma-irradiated platelet concentrates during storage. Transfusion. 2006 May;46(5):800-10.
  52. Scott MD, Nakane N, Maurer-Spurej E. Cryoprotection of platelets by grafted polymers. In: Quain M. Cryopreservation-Current Advances and Evaluations. IntechOpen; 2019.
  53. Slichter SJ, Harker LA. Preparation and storage of platelet concentrates. II. Storage variables influencing platelet viability and function. Br J Haematol. 1976 Nov;34(3):403-19. 
  54. Murphy S, Gardner FH. Platelet preservation. Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med. 1969 May 15;280(20):1094-8. 
  55. Murphy S, Gardner FH. Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood. 1975 Aug;46(2):209-18.
  56. Murphy S. The efficacy of synthetic media in the storage of human platelets for transfusion. Transfus Med Rev. 1999 Jul;13(3):153-63. 
  57. Ravi S, Chacko B, Kramer PA, Sawada H, Johnson MS, Zhi D, Marques MB, Darley-Usmar VM. Defining the effects of storage on platelet bioenergetics: The role of increased proton leak. Biochim Biophys Acta. 2015 Nov;1852(11):2525-34. 
  58. Moroff G, Friedman A, Robkin-Kline L. Factors influencing changes in pH during storage of platelet concentrates at 20-24 degree C. Vox Sang. 1982 Jan;42(1):33-45.
  59. Prowse CV, de Korte D, Hess JR, van der Meer PF; Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Commercially available blood storage containers. Vox Sang. 2014 Jan;106(1):1-13. 
  60. Murphy S, Kahn RA, Holme S, Phillips GL, Sherwood W, Davisson W, Buchholz DH. Improved storage of platelets for transfusion in a new container. Blood. 1982 Jul;60(1):194-200.
  61. Simon TL, Nelson EJ, Carmen R, Murphy S. Extension of platelet concentrate storage. Transfusion. 1983 May-Jun;23(3):207-12.
  62. Turner VS, Mitchell SG, Kang SK, Hawker RJ. A comparative study of platelets stored in polyvinyl chloride containers plasticised with butyryl trihexyl citrate or triethylhexyl trimellitate. Vox Sang. 1995;69(3):195-200. 
  63. Gulliksson H, Shanwell A, Wikman A, Reppucci AJ, Sallander S, Udén AM. Storage of platelets in a new plastic container. Polyvinyl chloride plasticized with butyryl-n-trihexyl citrate. Vox Sang. 1991;61(3):165-70.
  64. Edenbrandt CM, Murphy S. Adenine and guanine nucleotide metabolism during platelet storage at 22 degrees C. Blood. 1990 Nov 1;76(9):1884-92.
  65. Kilkson H, Holme S, Murphy S. Platelet metabolism during storage of platelet concentrates at 22 degrees C. Blood. 1984 Aug;64(2):406-14. 
  66. Cesar J, DiMinno G, Alam I, Silver M, Murphy S. Plasma free fatty acid metabolism during storage of platelet concentrates for transfusion. Transfusion. 1987 Sep-Oct;27(5):434-7.
  67. Murphy S. Platelet storage for transfusion. Beitr Infusionther Klin Ernahr. 1986;15:93-106.
  68. Rock G, Figueredo A. Metabolic changes during platelet storage. Transfusion. 1976 Nov-Dec;16(6):571-9.
  69. Gulliksson H. Storage of platelets in additive solutions: the effect of citrate and acetate in in vitro studies. Transfusion. 1993 Apr;33(4):301-3.
  70. Gulliksson H, Eriksson L, Högman CF, Payrat JM. Buffy-coat-derived platelet concentrates prepared from half-strength citrate CPD and CPD whole-blood units. Comparison between three additive solutions: in vitro studies. Vox Sang. 1995;68(3):152-9.
  71. Lin L, Cook DN, Wiesehahn GP, Alfonso R, Behrman B, Cimino GD, Corten L, Damonte PB, Dikeman R, Dupuis K, Fang YM, Hanson CV, Hearst JE, Lin CY, Londe HF, Metchette K, Nerio AT, Pu JT, Reames AA, Rheinschmidt M, Tessman J, Isaacs ST, Wollowitz S, Corash L. Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion. 1997 Apr;37(4):423-35. 
  72. Gulliksson H, AuBuchon JP, Vesterinen M, Sandgren P, Larsson S, Pickard CA, Herschel I, Roger J, Tracy JE, Langweiler M; Biomedical Excellence for Safer Transfusion working party of the international society of blood transfusion. Storage of platelets in additive solutions: a pilot in vitro study of the effects of potassium and magnesium. Vox Sang. 2002 Apr;82(3):131-6.
  73. Sweeney JD, Holme S, Moroff G. Storage of apheresis platelets after gamma radiation. Transfusion. 1994 Sep;34(9):779-83. 
  74. Valeri CR, Feingold H, Marchionni LD. The relation between response to hypotonic stress and the 51Cr recovery in vivo of preserved platelets. Transfusion. 1974 Jul-Aug;14(4):331-7.
  75. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol. 2001 Apr 1;532(Pt 1):3-16.
  76. Kim BK, Baldini MG. The platelet response to hypotonic shock. Its value as an indicator of platelet viability after storage. Transfusion. 1974 Mar-Apr;14(2):130-8.
  77. Bertolini F, Murphy S. A multicenter inspection of the swirling phenomenon in platelet concentrates prepared in routine practice. Biomedical Excellence for Safer Transfusion (BEST) working party of the international society of blood transfusion. Transfusion. 1996 Feb;36(2):128-32.
  78. Rinder HM, Snyder EL, Bonan JL, Napychank PA, Malkus H, Smith BR. Activation in stored platelet concentrates: correlation between membrane expression of P-selectin, glycoprotein IIb/IIIa, and beta-thromboglobulin release. Transfusion. 1993 Jan;33(1):25-9.
  79. Leytin V, Allen DJ, Gwozdz A, Garvey B, Freedman J. Role of platelet surface glycoprotein Ibalpha and P-selectin in the clearance of transfused platelet concentrates. Transfusion. 2004 Oct;44(10):1487-95.
  80. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, von Andrian UH, Wagner DD, Stossel TP, Hartwig JH. The clearance mechanism of chilled blood platelets. Cell. 2003 Jan 10;112(1):87-97.
  81. Valkonen S, Mallas B, Impola U, Valkeajärvi A, Eronen J, Javela K, Siljander PR, Laitinen S. Assessment of time-dependent platelet activation using extracellular vesicles, cd62p exposure, and soluble glycoprotein v content of platelet concentrates with two different platelet additive solutions. Transfus Med Hemother. 2019 Aug;46(4):267-75.
  82. Michelson AD, Barnard MR, Krueger LA, Frelinger AL 3rd, Furman MI. Evaluation of platelet function by flow cytometry. Methods. 2000 Jul;21(3):259-70.
  83. Rock G, Freedman M, Hamilton C, Bormanis J. New methods showing in vitro changes of platelets. Transfus Apher Sci. 2006 Oct;35(2):145-9. 
  84. Zhu M, Xu W, Wang BL, Su H. Hemostatic function and transfusion efficacy of apheresis platelet concentrates treated with gamma irradiation in use for thrombocytopenic patients. Transfus Med Hemother. 2014 Jun;41(3):189-96. 
  85. Tynngård N, Lindahl T, Ramström S, Berlin G. Effects of different blood components on clot retraction analysed by measuring elasticity with a free oscillating rheometer. Platelets. 2006 Dec;17(8):545-54.
  86. Green SM, Padula MP, Marks DC, Johnson L. The lipid composition of platelets and the impact of storage: an overview. Transfus Med Rev. 2020 Apr;34(2):108-16. 
  87. Zhao HW, Serrano K, Stefanoni D, D'Alessandro A, Devine DV. In Vitro Characterization and Metabolomic Analysis of Cold-Stored Platelets. J Proteome Res. 2021 May 7;20(5):2251-65. 
  88. Wood B, Padula MP, Marks DC, Johnson L. The immune potential of ex vivo stored platelets: a review. Vox Sang. 2021 May;116(5):477-88. 
  89. Schlossberg HR, Herman JH. Platelet dosing. Transfus Apher Sci. 2003 Jun;28(3):221-6. 
  90. Slichter SJ. Platelet transfusion therapy. Hematol Oncol Clin North Am. 1990 Feb;4(1):291-311. 
  91. Mallhi RS, Biswas AK, Philip J, Chatterjee T. To study the effects of gamma irradiation on single donor apheresis platelet units by measurement of cellular counts, functional indicators and a panel of biochemical parameters, in order to assess pre-transfusion platelet quantity and quality during the shelf life of the product. Med J Armed Forces India. 2016 Jan;72(1):19-26.
  92. Tynngård N, Studer M, Lindahl TL, Trinks M, Berlin G. The effect of gamma irradiation on the quality of apheresis platelets during storage for 7 days. Transfusion. 2008 Aug;48(8):1669-75. 
  93. Zimmermann R, Schmidt S, Zingsem J, Glaser A, Weisbach V, Ruf A, Eckstein R. Effect of gamma radiation on the in vitro aggregability of WBC-reduced apheresis platelets. Transfusion. 2001 Feb;41(2):236-42.
  94. Zhao LN, Zhao HS, Li JB, Shan H, Han XG, Jiao HL. [Effects of 25 Gy gamma-ray irradiation on the expression of CD62p in manually enriched human platelets]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010 Apr;18(2):490-3. [Chinese]
  95. Marin P, Le Forestier C, Beaujean F, Duedari N, Valls A. Effects of irradiation on human platelets stored at 20 degrees C. Radiother Oncol. 1987 Aug;9(4):273-9.
  96. Wollowitz S. Targeting DNA and RNA in pathogens: mode of action of amotosalen HCl. Transfus Med Hemother. 2004;31(Suppl. 1):11-6.
  97. Grass JA, Hei DJ, Metchette K, Cimino GD, Wiesehahn GP, Corash L, Lin L. Inactivation of leukocytes in platelet concentrates by photochemical treatment with psoralen plus UVA. Blood. 1998 Mar 15;91(6):2180-8.
  98. Picker SM, Speer R, Gathof BS. Functional characteristics of buffy-coat PLTs photochemically treated with amotosalen-HCl for pathogen inactivation. Transfusion. 2004 Mar;44(3):320-9.
  99. Apelseth TØ, Bruserud Ø, Wentzel-Larsen T, Bakken AM, Bjørsvik S, Hervig T. In vitro evaluation of metabolic changes and residual platelet responsiveness in photochemical treated and gamma-irradiated single-donor platelet concentrates during long-term storage. Transfusion. 2007 Apr;47(4):653-65.
  100. Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci. 2006 Aug;35(1):5-17.
  101. Picker SM, Steisel A, Gathof BS. Effects of Mirasol PRT treatment on storage lesion development in plasma-stored apheresis-derived platelets compared to untreated and irradiated units. Transfusion. 2008 Aug;48(8):1685-92. 
  102. Thiele T, Iuga C, Janetzky S, Schwertz H, Gesell Salazar M, Fürll B, Völker U, Greinacher A, Steil L. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ₃ and focal adhesion signaling pathways. J Proteomics. 2012 Dec 5;76 Spec No.:297-315.
  103. Thiele T, Steil L, Gebhard S, Scharf C, Hammer E, Brigulla M, Lubenow N, Clemetson KJ, Völker U, Greinacher A. Profiling of alterations in platelet proteins during storage of platelet concentrates. Transfusion. 2007 Jul;47(7):1221-33. 
  104. Duan X, Kelsen SG, Merali S. Proteomic analysis of oxidative stress-responsive proteins in human pneumocytes: insight into the regulation of DJ-1 expression. J Proteome Res. 2008 Nov;7(11):4955-61.
  105. Marrocco C, D'Alessandro A, Girelli G, Zolla L. Proteomic analysis of platelets treated with gamma irradiation versus a commercial photochemical pathogen reduction technology. Transfusion. 2013 Aug;53(8):1808-20.
  106. Holbrook LM, Sasikumar P, Stanley RG, Simmonds AD, Bicknell AB, Gibbins JM. The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function. J Thromb Haemost. 2012 Feb;10(2):278-88.
  107. Picker SM, Steisel A, Gathof BS. Cell integrity and mitochondrial function after Mirasol-PRT treatment for pathogen reduction of apheresis-derived platelets: Results of a three-arm in vitro study. Transfus Apher Sci. 2009 Apr;40(2):79-85.
  108. Anderson G, Mintz PD. Effect of oxygen and temperature on the potassium efflux of irradiated, stored red blood cells. Ann Clin Lab Sci. 1994 Jul-Aug;24(4):339-45.
  109. Fujita H, Tojo Y, Mine T, Tanaka A. Temperature management of red blood cell solution transported by car for transfusion at home. Open J Blood Dis. 2020;10(02):37.
  110. Hess JR. An update on solutions for red cell storage. Vox Sang. 2006 Jul;91(1):13-9.
  111. Shields CE. Effect of adenine on stored erythrocytes evaluated by autologous and homologous transfusions. Transfusion. 1969 May-Jun;9(3):115-9. 
  112. Simon ER, Chapman RG, Finch CA. Adenine in red cell preservation.  J Clin Invest. 1962;41(2):351-9.
  113. Högman CF, Hedlund K, Zetterström H. Clinical usefulness of red cells preserved in protein-poor mediums. N Engl J Med. 1978 Dec 21;299(25):1377-82.
  114. Högman CF, Hedlund K, Sahleström Y. Red cell preservation in protein-poor media. III. Protection against in vitro hemolysis. Vox Sang. 1981 Nov-Dec;41(5-6):274-81.
  115. D'Amici GM, Mirasole C, D'Alessandro A, Yoshida T, Dumont LJ, Zolla L. Red blood cell storage in SAGM and AS3: a comparison through the membrane two-dimensional electrophoresis proteome. Blood Transfus. 2012 May;10 Suppl 2(Suppl 2):s46-54.
  116. Hess JR. Measures of stored red blood cell quality. Vox Sang. 2014 Jul;107(1):1-9.
  117. Li Y, Xiong Y, Wang R, Tang F, Wang X. Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus. 2016 May;14(2):238-44.
  118. Adams F, Bellairs GRM, Bird AR, Oguntibeju OO. Metabolic effects occurring in irradiated and non-irradiated red blood cellular components for clinical transfusion practice: An in vitro comparison. Afr J Lab Med. 2018 Dec 6;7(1):606. 
  119. Pertinhez TA, Casali E, Baroni F, Berni P, Baricchi R, Spisni A. A comparative study of the effect of leukoreduction and pre-storage leukodepletion on red blood cells during storage. Front Mol Biosci. 2016 Apr 21;3:13.
  120. Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009 Feb;96(2):93-103.
  121. Zolla L, D'alessandro A, Rinalducci S, D'amici GM, Pupella S, Vaglio S, Grazzini G. Classic and alternative red blood cell storage strategies: seven years of "-omics" investigations. Blood Transfus. 2015 Jan;13(1):21-31. 
  122. Hamasaki N. The role of band 3 protein in oxygen delivery by red blood cells. Indian J Clin Biochem. 1999 Jan;14(1):49-58.
  123. Solheim BG, Flesland O, Seghatchian J, Brosstad F. Clinical implications of red blood cell and platelet storage lesions: an overview. Transfus Apher Sci. 2004 Dec;31(3):185-9.
  124. Messana I, Ferroni L, Misiti F, Girelli G, Pupella S, Castagnola M, Zappacosta B, Giardina B. Blood bank conditions and RBCs: the progressive loss of metabolic modulation. Transfusion. 2000 Mar;40(3):353-60. 
  125. Parrow NL, Violet PC, Tu H, Nichols J, Pittman CA, Fitzhugh C, Fleming RE, Mohandas N, Tisdale JF, Levine M. Measuring deformability and red cell heterogeneity in blood by ektacytometry. J Vis Exp. 2018 Jan 12;(131):56910.
  126. Patidar GK, Joshi A, Marwaha N, Prasad R, Malhotra P, Sharma RR, Dhawan HK. Serial assessment of biochemical changes in irradiated red blood cells. Transfus Apher Sci. 2014 Jun;50(3):479-87.
  127. Cho CH, Yun SG, Koh YE, Lim CS. Effect of irradiation on microparticles in red blood cell concentrates. Ann Lab Med. 2016 Jul;36(4):362-6. 
  128. Eshghifar N, Maghsudlu M, Amini Kafi-Abad S. The effect of pre-storage irradiation blood on quality of red blood cells. Int J Hematol Oncol Stem Cell Res. 2021 Jan 1;15(1):1-6.
  129. Cicha I, Suzuki Y, Tateishi N, Shiba M, Muraoka M, Tadokoro K, Maeda N. Gamma-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium: rheological evaluation and susceptibility to oxidative stress. Vox Sang. 2000;79(2):75-82.
  130. Moroff G, Holme S, AuBuchon JP, Heaton WA, Sweeney JD, Friedman LI. Viability and in vitro properties of AS-1 red cells after gamma irradiation. Transfusion. 1999 Feb;39(2):128-34. 
  131. El Kenz H, Corazza F, Van Der Linden P, Chabab S, Vandenvelde C. Potassium content of irradiated packed red blood cells in different storage media: is there a need for additive solution-dependent recommendations for infant transfusion? Transfus Apher Sci. 2013 Oct;49(2):249-53.
  132. Hauck-Dlimi B, Braun T, Eckstein R, Strobel J, Zimmermann R. Influence of early irradiation on in vitro red blood cell (RBC) storage variables of leucoreduced RBCs in additive solution SAG-M. Vox Sang. 2016 May;110(4):362-8.
  133. Zimmermann R, Schoetz AM, Frisch A, Hauck B, Weiss D, Strobel J, Eckstein R. Influence of late irradiation on the in vitro RBC storage variables of leucoreduced RBCs in SAGM additive solution. Vox Sang. 2011 Apr;100(3):279-84.
  134. Zimmermann R, Wintzheimer S, Weisbach V, Strobel J, Zingsem J, Eckstein R. Influence of prestorage leukoreduction and subsequent irradiation on in vitro red blood cell (RBC) storage variables of RBCs in additive solution saline-adenine-glucose-mannitol. Transfusion. 2009 Jan;49(1):75-80.
  135. Serrano K, Chen D, Hansen AL, Levin E, Turner TR, Kurach JD, Acker JP, Devine DV. The effect of timing of gamma-irradiation on hemolysis and potassium release in leukoreduced red cell concentrates stored in SAGM. Vox Sang. 2014 May;106(4):379-81.
  136. Hauck B, Oremek D, Zimmermann R, Ruppel R, Troester B, Eckstein R. Influence of irradiation on in vitro red-blood-cell (RBC) storage variables of leucoreduced RBCs in additive solution PAGGS-M. Vox Sang. 2011 Jul;101(1):21-7.
  137. Qadri SM, Chen D, Schubert P, Devine DV, Sheffield WP. Early γ-irradiation and subsequent storage of red cells in SAG-M additive solution potentiate energy imbalance, microvesiculation and susceptibility to stress-induced apoptotic cell death. Vox Sang. 2017 Jul;112(5):480-83. 
  138. Maia GA, Cortes VF, Ribeiro RI, Mignaco JA, de Lima Santos H, Fontes CF, Barbosa LA. Could Na,K-ATPase play a role in potassium leakage from irradiated erythrocytes? Clin Chim Acta. 2014 Jun 10;433:58-61.
  139. Barjas-Castro ML, Brandão MM, Fontes A, Costa FF, Cesar CL, Saad ST. Elastic properties of irradiated RBCs measured by optical tweezers. Transfusion. 2002 Sep;42(9):1196-9.
  140. AlZahrani K, Al-Sewaidan HA. Nanostructural changes in the cell membrane of gamma-irradiated red blood cells. Indian J Hematol Blood Transfus. 2017 Mar;33(1):109-15. 
  141. Acosta-Elías MA, Burgara-Estrella AJ, Sarabia-Sainz JA, Silva-Campa E, Angulo-Molina A, Santacruz-Gómez KJ, Castaneda B, Soto-Puebla D, Ledesma-Osuna AI, Melendrez-Amavizca R, Pedroza-Montero M. Nano alterations of membrane structure on both γ-irradiated and stored human erythrocytes. Int J Radiat Biol. 2017 Dec;93(12):1306-11.
  142. Yousuf R, Mobin MH, Subramaniam T, Leong CF. Effects of gamma irradiation on red blood cells at different storage period: A comparative study. Bangladesh J Med Sci. 2018;17(1):30-5.
  143. Zbikowska HM, Antosik A. Irradiation dose-dependent oxidative changes in red blood cells for transfusion. Int J Radiat Biol. 2012 Sep;88(9):654-60. 
  144. Ran Q, Hao P, Xiao Y, Zhao J, Ye X, Li Z. Effect of irradiation and/or leucocyte filtration on RBC storage lesions. PLoS One. 2011;6(3):e18328.
  145. Leitner GC, Neuhauser M, Weigel G, Kurze S, Fischer MB, Höcker P. Altered intracellular purine nucleotides in gamma-irradiated red blood cell concentrates. Vox Sang. 2001;81(2):113-8. 
  146. Patel RM, Roback JD, Uppal K, Yu T, Jones DP, Josephson CD. Metabolomics profile comparisons of irradiated and nonirradiated stored donor red blood cells. Transfusion. 2015 Mar;55(3):544-52. 
  147. Walpurgis K, Kohler M, Thomas A, Wenzel F, Geyer H, Schänzer W, Thevis M. Effects of gamma irradiation and 15 days of subsequent ex vivo storage on the cytosolic red blood cell proteome analyzed by 2D-DIGE and Orbitrap MS. Proteomics Clin Appl. 2013 Aug;7(7-8):561-70.
  148. Wagner SJ, Myrup AC. Prestorage leucoreduction improves several in vitro red cell storage parameters following gamma irradiation. Transfus Med. 2006 Aug;16(4):261-5. 
  149. Weiskopf RB, Schnapp S, Rouine-Rapp K, Bostrom A, Toy P. Extracellular potassium concentrations in red blood cell suspensions after irradiation and washing. Transfusion. 2005 Aug;45(8):1295-301.
  150. de Oliveira GC, Maia GA, Cortes VF, Santos Hde L, Moreira LM, Barbosa LA. The effect of γ-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation. Ann Hematol. 2013 Jul;92(7):899-906.