Standardization and optimization of Siemens Biograph TruePoint PET/CT acquisition and reconstruction parameters: Simultaneous qualitative and quantitative assessments

Document Type : Original Article

Authors

1 Department of Medical Physics, Mashhad University of Medical Science, Mashhad, Iran

2 Research Center for Nuclear Medicine, Tehran University of Medical Science, Tehran, Iran

3 Nuclear Medicine and Molecular Imaging Department, Imam Reza International University, Razavi Hospital, Mashhad, Iran

4 Nuclear Medicine Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

5 Departments of Radiology and Physics, University of British Columbia, Vancouver, Canada

Abstract

Introduction: Data acquisition and image reconstruction protocols affect image quality and quantification accuracy in PET imaging. We aimed to standardize and optimize image acquisition, and reconstruction parameter sets using a simultaneous quantitative and qualitative assessment framework for a lutetium oxyorthosilicate (LSO)-based PET/CT scanner.
Methods: The NEMA IEC Body Phantom acquisition was performed in list mode for 10 minutes with four spheres to background ratios (SBRs). Raw PET data were reconstructed using 60 different protocols. Image quality was evaluated for standardization using contrast, CNR, and noise. Recovery coefficient (RC) measurements were performed for different common VOI definitions.
Results: No significant differences were observed between RCs for various acquisition durations. The contrast to noise ratio (CNR) increased at all SBRs by expanding the acquisition duration from 60 to 600 seconds. PET scan time was reduced to 90 seconds per bed position while preserving image quality. Up to 50% improvement in CNR for the highest sub-iteration with a high level of smoothing was observed. PSF-based reconstruction produced a positive bias of RCmax in high SBRs (8 and 10) using higher sub-iterations (30 to 60) with Gaussian filters less than 6 mm FWHM. Moreover, a Sub-iteration of more than 32 with a 4-6 mm FWHM Gaussian filter provides optimized reconstruction sets.
Conclusion: Our study demonstrates it would be feasible for PET image acquisition and reconstruction settings to simultaneously allow optimal lesion detection with high image quality while providing accurate quantification.

Keywords

Main Subjects


  1. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010 Jan;37(1):181-200.
  2. Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010 Aug;195(2):310-20.
  3. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009 May;50 Suppl 1:11S-20S
  4. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ; European Association of Nuclear Medicine (EANM). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015 Feb;42(2):328-54.
  5. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006 May;47(5):885-95. 
  6. Graham MM, Wahl RL, Hoffman JM, Yap JT, Sunderland JJ, Boellaard R, Perlman ES, Kinahan PE, Christian PE, Hoekstra OS, Dorfman GS. Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical trials. J Nucl Med. 2015 Jun;56(6):955-61. 
  7. Ferretti A, Chondrogiannis S, Rampin L, Bellan E, Marzola MC, Grassetto G, Gusella S, Maffione AM, Gava M, Rubello D. How to harmonize SUVs obtained by hybrid PET/CT scanners with and without point spread function correction. Phys Med Biol. 2018 Nov 26;63(23):235010.
  8. Kaalep A, Sera T, Rijnsdorp S, Yaqub M, Talsma A, Lodge MA, Boellaard R. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018 Jul;45(8):1344-61. 
  9. Vosoughi H, Hajizadeh M, Emami F, Momennezhad M, Geramifar P. PET NEMA IQ Phantom dataset: image reconstruction settings for quantitative PET imaging. Data Brief. 2021 Jun 18;37:107231. 
  10. Vosoughi H, Momennezhad M, Emami F, Hajizadeh M, Rahmim A, Geramifar P. Multicenter quantitative 18F-fluorodeoxyglucose positron emission tomography performance harmonization: use of hottest voxels towards more robust quantification. Quant Imaging Med Surg. 2023 Apr 1;13(4):2218-33.
  11. Lammertsma AA, Boellaard R. The need for quantitative PET in multicentre studies. Clin Transl Imaging. 2014;2(4):277-80.
  12. Hausmann D, Dinter DJ, Sadick M, Brade J, Schoenberg SO, Büsing K. The impact of acquisition time on image quality in whole-body 18F-FDG PET/CT for cancer staging. J Nucl Med Technol. 2012 Dec;40(4):255-8. 
  13. Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, Bouchet F, Couturier O. For avid glucose tumors, the SUV peak is the most reliable parameter for [18 F] FDG-PET/CT quantification, regardless of acquisition time. EJNMMI res. 2016;6(1):21.
  14. Øen SK, Aasheim LB, Eikenes L, Karlberg AM. Image quality and detectability in Siemens Biograph PET/MRI and PET/CT systems-a phantom study. EJNMMI Phys. 2019 Aug 5;6(1):16.
  15. Brown C, Dempsey MF, Gillen G, Elliott AT. Investigation of 18F-FDG 3D mode PET image quality versus acquisition time. Nucl Med Commun. 2010 Mar;31(3):254-9. 
  16. Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, Ratib O, Czernin J. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004 May;45(5):797-801.
  17. Goethals I, D'Asseler Y, Dobbeleir A, Deblaere K, Ham H. The effect of acquisition time on visual and semi-quantitative analysis of F-18 FDG-PET studies in patients with head and neck cancer. Nucl Med Commun. 2010 Mar;31(3):227-31.
  18. Prieto E, Martí-Climent JM, Morán V, Sancho L, Barbés B, Arbizu J, Richter JA. Brain PET imaging optimization with time of flight and point spread function modelling. Phys Med. 2015 Dec;31(8):948-55. 
  19. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012 Nov;53(11):1716-22. 
  20. Khazaee M, Kamali-Asl A, Geramifar P, Rahmim A. Low-dose 90Y PET/CT imaging optimized for lesion detectability and quantitative accuracy: a phantom study to assess the feasibility of pretherapy imaging to plan the therapeutic dose. Nucl Med Commun. 2017 Nov;38(11):985-97.
  21. Machado MAD, Menezes VO, Namías M, Vieira NS, Queiroz CC, Matheoud R, Alessio AM, Oliveira ML. Protocols for Harmonized Quantification and Noise Reduction in Low-Dose Oncologic 18F-FDG PET/CT Imaging. J Nucl Med Technol. 2019 Mar;47(1):47-54.
  22. Kelly MD, Declerck JM. SUVref: reducing reconstruction-dependent variation in PET SUV. EJNMMI Res. 2011 Aug 18;1(1):16.
  23. Munk OL, Tolbod LP, Hansen SB, Bogsrud TV. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys. 2017 Dec;4(1):5.
  24. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013 Jun;40(6):064301.
  25. Bai B, Esser PD. The effect of edge artifacts on quantification of positron emission tomography. IEEE Nucl Sci Symp Med Imaging Conf. 2010:2263-6
  26. Tsutsui Y, Awamoto S, Himuro K, Umezu Y, Baba S, Sasaki M. Edge artifacts in point spread function-based PET reconstruction in relation to object size and reconstruction parameters. Asia Ocean J Nucl Med Biol. 2017 Spring;5(2):134-43. 
  27. Sheikhbahaei S, Marcus C, Wray R, Rahmim A, Lodge MA, Subramaniam RM. Impact of point spread function reconstruction on quantitative 18F-FDG-PET/CT imaging parameters and inter-reader reproducibility in solid tumors. Nucl Med Commun. 2016 Mar;37(3):288-96. 
  28. Bettinardi V, Castiglioni I, De Bernardi E, Gilardi M. PET quantification: strategies for partial volume correction. Clin Transl Imaging. 2014;2(3):199-218.
  29. Prieto E, Domínguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JÁ, Martí-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. 2013 Feb;38(2):103-9. 
  30. Devriese J, Beels L, Maes A, Van de Wiele C, Pottel H. Impact of PET reconstruction protocols on quantification of lesions that fulfil the PERCIST lesion inclusion criteria. EJNMMI Phys. 2018 Dec 7;5(1):35.