Does the presence of high levels of free Sn2+ in PYP kit causes in vivo red blood cell radiolabeling and high blood pool radioactivity?

Document Type : Original Article

Authors

1 Department of Nuclear Medicine, School of Medicine, Hasheminejad Hospital, Iran University of Medical Sciences, Tehran, Iran

2 Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

3 Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Technetium-99m-pyrophosphate scintigraphy (TPS) is a highly effective method for diagnosing transthyretin cardiac amyloidosis (ATTR-CA). It may eliminate the need for endomyocardial biopsy. However, the detection of radioactivity in the blood pool (BP) during these scans can make it difficult to interpret planar images. This often leads to the necessity for longer and repeated scanning sessions.
Methods: We conducted a prospective study involving unique patients who underwent TPS. The initial group of 58 patients used a pyrophosphate (PYP) kit labeled with 30 mCi (PYP-30) of radioactivity, while the subsequent group had a kit labeled with 90 mCi (PYP-90), although the administrated dose remained constant. This study aimed to assess how varying radioactivity levels in the kits affected BP activity visualization.
Results: Univariable analysis showed creatinine level of the patients and added radioactivity amount in the PYP kits affected BP activity (p<0.05), while gender, age, and BMI did not (p>0.05). Multivariable analysis confirmed creatinine (OR<0.001) and added radioactivity (OR=0.005) significantly influenced BP visualization. Patients with creatinine<1.5 showed a significant difference in BP activity between two groups (PYP-30 and PYP-90), but those with creatinine ≥1.5 did not.
Conclusion: These findings emphasize the significance of considering the levels of radioactivity in PYP kits, which may be linked to the concentration of free Sn²⁺ in the prepared kit, as well as the patient’s kidney function. These factors are essential for optimizing imaging quality and improving diagnostic accuracy in cases of cardiac amyloidosis.

Keywords

Main Subjects


  1. Bou Zerdan M, Nasr L, Khalid F, Allam S, Bouferraa Y, Batool S, Tayyeb M, Adroja S, Mammadii M, Anwer F, Raza S, Chaulagain CP. Systemic AL amyloidosis: current approach and future direction. Oncotarget. 2023 Apr 26;14:384-94.
  2. Kumar SK, Callander NS, Adekola K, Anderson LD Jr, Baljevic M, Campagnaro E, Castillo JJ, Costello C, D'Angelo C, Devarakonda S, Elsedawy N, Garfall A, Godby K, Hillengass J, Holmberg L, Htut M, Huff CA, Hultcrantz M, Kang Y, Larson S, Lee HC, Liedtke M, Martin T, Omel J, Rosenberg A, Sborov D, Valent J, Berardi R, Kumar R. systemic light chain amyloidosis, version 2.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2023 Jan;21(1):67-81.
  3. Wechalekar AD, Cibeira MT, Gibbs SD, Jaccard A, Kumar S, Merlini G, Palladini G, Sanchorawala V, Schönland S, Venner C, Boccadoro M, Kastritis E. Guidelines for non-transplant chemotherapy for treatment of systemic AL amyloidosis: EHA-ISA working group. Amyloid. 2023 Mar;30(1):3-17.
  4. Poterucha TJ, Elias P, Bokhari S, Einstein AJ, DeLuca A, Kinkhabwala M, Johnson LL, Flaherty KR, Saith SE, Griffin JM, Perotte A, Maurer MS. Diagnosing transthyretin cardiac amyloidosis by Technetium Tc 99m pyrophosphate: a test in evolution. JACC Cardiovasc Imaging. 2021 Jun;14(6):1221-31.
  5. Goldis R, Kaplan B, Kukuy OL, Arad M, Magen H, Shavit-Stein E, Dori A, Livneh A. Diagnostic challenges and solutions in systemic amyloidosis. Int J Mol Sci. 2023 Feb 28;24(5):4655. 
  6. Wehbe RM, Kansal P, Holly TA. Cases from a busy nuclear cardiology laboratory: Potential pitfalls in the interpretation of cardiac scintigraphy for ATTR cardiac amyloidosis. J Nucl Cardiol. 2021 Apr;28(2):653-660.
  7. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AW, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. circulation. 2016 Jun 14;133(24):2404-12. 
  8. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013 Mar 1;6(2):195-201. 
  9. Masri A, Bukhari S, Ahmad S, Nieves R, Eisele YS, Follansbee W, Brownell A, Wong TC, Schelbert E, Soman P. Efficient 1-hour Technetium-99 m pyrophosphate imaging protocol for the diagnosis of transthyretin cardiac amyloidosis. Circ Cardiovasc Imaging. 2020 Feb;13(2):e010249. 
  10. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging. 2014 May;7(3):552-62. 
  11. Bokhari S, Morgenstern R, Weinberg R, Kinkhabwala M, Panagiotou D, Castano A, DeLuca A, Kontak A, Jin Z, Maurer MS. Standardization of 99mTechnetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J Nucl Cardiol. 2018 Feb;25(1):181-90.
  12. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AW, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016 Jun 14;133(24):2404-12.
  13. Dorbala S, Bokhari S, Glaudemans A, Miller E, Bullock-Palmer R, Slart R, Soman P, Thompson R, Verberne HJ. 99mTechnetium-3, 3-diphosphono-1, 2-propanodicarboxylic acid (DPD) and 99mTechnetiumhydroxymethylene diphosphonate (HMDP) Imaging for transthyretin. ASNC and EANM Cardiac Amiloidosis Practice Points. 2019. 
  14. Asif T, Gupta A, Murthi M, Soman P, Singh V, Malhotra S. Echocardiographic indices of left ventricular function and filling pressure are not related to blood pool activity on pyrophosphate scintigraphy. J Nucl Cardiol. 2023 Apr;30(2):708-15. 
  15. Zimmer AM, Pavel DG, Karesh SM. Technical parameters of in vivo red blood cell labeling with Technetium-99m. Nuklearmedizin. 1979 Dec;18(5):241-5.
  16. Pujatti PB, Dos Santos JP, Gomes ML, Cardoso MA, Guimarães TT, Felix RC. A comparative study on the quality of in vivo labeled red blood cell radionuclide ventriculography images employing different freeze-dried reagents. Nucl Med Commun.2024;45(2):155-60.
  17. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, Ficaro EP, Hansen CL, Henzlova MJ, Van Kriekinge S. Quality assurance committee of the american society of nuclear cardiology. Equilibrium radionuclide angiocardiography. J Nucl Cardiol. 2006 Nov;13(6):e56-79. 
  18. Bokhari S, Cerqueira MD. Tc-99m-PYP imaging for cardiac amyloidosis: defining the best protocol before the flood gates burst. J Nucl Cardiol. 2020 Oct;27(5):1816-9.
  19. Khor YM, Cuddy SAM, Singh V, Falk RH, Di Carli MF, Dorbala S. 99mTc bone-avid tracer cardiac scintigraphy: role in noninvasive diagnosis of transthyretin cardiac amyloidosis. Radiology. 2023 Feb;306(2):e221082.