Advances in targeted cancer imaging using galactose-modified polymeric nanoparticles: A systematic review

Document Type : Systematic Review/Meta-analysis

Authors

1 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

2 Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran

3 Department of Community and Family Medicine, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran

10.22034/irjnm.2025.130203.1702

Abstract

Introduction: Early cancer detection remains challenging due to the limited sensitivity and specificity of conventional imaging. Galactose-functionalized polymeric nanoparticles (Gal-PNPs) target galactose-recognizing receptors, such as asialoglycoprotein receptor (ASGPR) and galectins. This systematic review evaluated their design strategies, imaging efficacy, and biosafety across various cancer models.
Methods: Following PRISMA 2020 guidelines, PubMed, Web of Science, and Scopus were searched for English-language original research articles published between 2015 and 2025. Eligible studies included in vivo and ex vivo research employing Gal-PNPs for molecular imaging in cancer. Extracted data encompassed nanoparticle composition, galactosylation chemistry, imaging modality, receptor specificity, biodistribution, and safety outcomes. Given the heterogeneity of nanoparticle types and imaging platforms, a narrative synthesis was performed. The risk of bias was assessed using a modified SYRCLE tool.
Results: Twelve studies met the inclusion criteria. Gal-PNPs demonstrated strong performance across fluorescence, near-infrared, PET/CT, nuclear, and photothermal imaging. Most studies targeted hepatocellular carcinoma via ASGPR, while others explored galectin-mediated targeting in bladder, breast, and glioblastoma cancer models. Diverse galactosylation methods, click chemistry, amide coupling, ring opening, and metabolic glycoengineering were applied to polymeric backbones such as dendrimers, chitosan, alginate, and micelles. Gal-PNPs achieved superior tumor selectivity, high tumor-to-background ratios, sustained signal retention, and favorable biocompatibility.
Conclusion: Gal-PNPs constitute a selective, biocompatible, and versatile platform for receptor-targeted cancer imaging. Their dual diagnostic and therapeutic potential, combined with molecular adaptability, highlights their translational promise in precision oncology. Future research should extend these systems to non-hepatic malignancies, standardize formulation characterization, and advance clinical imaging validation.

Keywords

Main Subjects


  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-63.
  2. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science. 2022 Mar 18;375(6586):eaay9040.
  3. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: improvements and limitations. Cancer Rep (Hoboken). 2023 Feb;6(2):e1764.
  4. Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol. 2025 Jan 20;42(2):50.
  5. Yin C, Hu P, Qin L, Wang Z, Zhao H. The current status and future directions on nanoparticles for tumor molecular imaging. Int J Nanomedicine. 2024 Sep 14;19:9549-74.
  6. Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 Sep 1;352:122899.
  7. Umadevi K, Sundeep D, Vighnesh AR, Misra A, Krishna AG. Current trends and advances in nanoplatforms-based imaging for cancer diagnosis. Indian J Microbiol. 2025 Mar;65(1):137-76.
  8. Gu X, Minko T. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer. Cancers (Basel). 2024 Apr 20;16(8):1589.
  9. Habeeb M, Vengateswaran HT, Tripathi AK, Kumbhar ST, You HW, Hariyadi. Enhancing biomedical imaging: the role of nanoparticle-based contrast agents. Biomed Microdevices. 2024 Oct 23;26(4):42.
  10. Jena BR, Dash R, Mishra H. Polymeric nanoparticles used in biosensors. InMaterials and Components of Biosensors in Healthcare. Academic Press; 2025. p. 71-90.
  11. Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered polymeric nanoparticles. Small. 2024 May;20(21):e2310876.
  12. Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv Mater. 2024 May;36(19):e2310032.
  13. Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and fabrication of environmentally responsive nanoparticles for the diagnosis and treatment of atherosclerosis. ACS Biomater Sci Eng. 2024 Mar 11;10(3):1190-206.
  14. Gaddimath S, Payamalle S, Channabasavana Hundi Puttaningaiah KP, Hur J. Recent advances in pH and redox responsive polymer nanocomposites for cancer therapy. J Compos Sci. 2024;8(1):28.
  15. Shi Y, Yu Q, Tan L, Wang Q, Zhu WH. Tumor microenvironment-responsive polymer delivery platforms for cancer therapy. Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202503776.
  16. Hu T, Shen C, Wang X, Wu F, He Z. Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chin Chem Lett. 2024 Nov 1;35(11):109562.
  17. Tao Q, Wen Y, Liang W, Wang L, Guo R, Ding M, Luo M, Yan J, Gong F, Cao C, Li L. Development of ratiometric DNA biosensors with improved accuracy, precision, and signal-to-noise ratio. Adv Sens Energy Mat. 2024 Sep 1;3(3):100106.
  18. Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci. 2022 Jun 14;10(12):3029-53.
  19. Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release. 2013 Nov 28;172(1):38-47.
  20. ZieliƄska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020 Aug 15;25(16):3731.
  21. Li J, Chang X, Chen X, Gu Z, Zhao F, Chai Z, Zhao Y. Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv. 2014 Jul-Aug;32(4):727-43.
  22. Wang J, Wang H, Zou F, Gu J, Deng S, Cao Y, Cai K. The role of inorganic nanomaterials in overcoming challenges in colorectal cancer diagnosis and therapy. Pharmaceutics. 2025 Mar 25;17(4):409.
  23. Yang Y, Li Y, Wang C, Wang Y, Ren Y, Wu J, Ju H, Chen Y. Ultra-galactocation to sialic acid on tumor cells with a penta-functional dendritic probe for enhanced immune-killing. Angew Chem Int Ed Engl. 2024 May 13;63(20):e202319849.
  24. Cheng M, Ma D, Zhi K, Liu B, Zhu W. Synthesis of biotin-modified galactosylated chitosan nanoparticles and their characteristics in vitro and in vivo. Cell Physiol Biochem. 2018;50(2):569-84.
  25. Liu F, Liu L, Wei P, Yi T. A reactive oxygen species-triggerable theranostic prodrug system. J Control Release. 2024 Dec;376:961-71.
  26. Somasundaram VH, Pillai R, Malarvizhi G, Ashokan A, Gowd S, Peethambaran R, Palaniswamy S, Unni A, Nair S, Koyakutty M. Biodegradable radiofrequency responsive nanoparticles for augmented thermal ablation combined with triggered drug release in liver tumors. ACS Biomater Sci Eng. 2016 May 9;2(5):768-79.
  27. Hu H, Xiao C, Wu H, Li Y, Zhou Q, Tang Y, Yu C, Yang X, Li Z. Nanocolloidosomes with selective drug release for active tumor-targeted imaging-guided photothermal/chemo combination therapy. ACS Appl Mater Interfaces. 2017 Dec 6;9(48):42225-38.
  28. Ye Z, Wu WR, Qin YF, Hu J, Liu C, Seeberger PH, Yin J. An integrated therapeutic delivery system for enhanced treatment of hepatocellular carcinoma. Adv Funct Mater. 2018;28(18):1706600.
  29. Wang H, Liu Y, Xu M, Cheng J. Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma. Biomater Sci. 2019 Oct 1;7(10):4166-73.
  30. Ma W, Bi J, Wu H, Zhang G. An amphiphilic micromolecule self-assembles into vesicles for visualized and targeted drug delivery. ACS Med Chem Lett. 2020 Jul 20;11(8):1562-6.
  31. Wu C, Li P, Fan N, Han J, Zhang W, Zhang W, Tang B. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl Mater Interfaces. 2019 Dec 4;11(48):44999-5006.
  32. Pereira PMR, Roberts S, Figueira F, Tomé JPC, Reiner T, Lewis JS. PET/CT imaging with an 18F-labeled galactodendritic unit in a galectin-1-overexpressing orthotopic bladder cancer model. J Nucl Med. 2020 Sep;61(9):1369-75.
  33. Sharma R, Liaw K, Sharma A, Jimenez A, Chang M, Salazar S, Amlani I, Kannan S, Kannan RM. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release. 2021 Sep 10;337:179-92.
  34. An J, Guo Q, Zhang P, Sinclair A, Zhao Y, Zhang X, Wu K, Sun F, Hung HC, Li C, Jiang S. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. Nanoscale. 2016 Apr 28;8(17):9318-27.
  35. Zhang N, Liu Q, Wang D, Wang X, Pan Z, Han B, He G. Multifaceted roles of galectins: from carbohydrate binding to targeted cancer therapy. Biomark Res. 2025 Mar 25;13(1):49.
  36. D'Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release. 2015 Apr 10;203:126-39.
  37. Rabinovich GA. Galectin-1 as a potential cancer target. Br J Cancer. 2005 Apr 11;92(7):1188-92.
  38. Zou Y, Song Y, Yang W, Meng F, Liu H, Zhong Z. Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. J Control Release. 2014 Nov 10;193:154-61.
  39. Lou S, Gao S, Wang W, Zhang M, Zhang J, Wang C, Li C, Kong D, Zhao Q. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale. 2015 Feb 21;7(7):3137-46.
  40. Peng YY, Diaz-Dussan D, Kumar P, Narain R. Tumor microenvironment-regulated redox responsive cationic galactose-based hyperbranched polymers for siRNA delivery. Bioconjug Chem. 2019 Feb 20;30(2):405-12.
  41. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71.
  42. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014 Mar 26;14:43.
  43. Walter MV, Malkoch M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem Soc Rev. 2012 Jul 7;41(13):4593-609.
  44. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013 Dec 28;172(3):782-94.
  45. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013 May 27;9(9-10):1521-32.
  46. Zadeh Mehrizi T. Assessment of the effect of polymeric nanoparticles on storage and stability of blood products (red blood cells, plasma, and platelet). Polym Bull. 2023 Mar;80(3):2263-98.
  47. Mehrizi TZ, Ardestani MS. The introduction of dendrimers as a new approach to improve the performance and quality of various blood products (platelets, plasma and erythrocytes): a 2010-2022 review study. Curr Nanosci. 2023 Jan 1;19(1):103-22.
  48. Zadeh Mehrizi T, Shafiee Ardestani M, Rezayat SM, Javanmard A. A review study of the use of modified chitosan as a new approach to increase the preservation of blood products (erythrocytes, platelets, and plasma products): 2010-2022. Nanomed J. 2023 Jan 1;10(1):16-32.
  49. Zadeh Mehrizi T, Shafiee Ardestani M, Mirzaei M, Javanmard A. A review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins. Nanomed J. 2022 Oct 1;9(4):261-72.
  50. Mehrizi TZ, Mirzaei M, Ardestani MS. Pegylation, a successful strategy to address the storage and instability problems of blood products: review 2011-2021. Curr Pharm Biotechnol. 2024;25(3):247-67.
  51. Mehrizi TZ, Ardestani MS, Kafiabad SA. A review study of the influences of dendrimer nanoparticles on stored platelet in order to treat patients (2001-2020). Curr Nanosci. 2022 May 1;18(3):304-18.
  52. Korde A, Mikolajczak R, Kolenc P, Bouziotis P, Westin H, Lauritzen M, Koole M, Herth MM, Bardiès M, Martins AF, Paulo A, Lyashchenko SK, Todde S, Nag S, Lamprou E, Abrunhosa A, Giammarile F, Decristoforo C. Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2022 Jul 19;7(1):18.
  53. McDougald W, Vanhove C, Lehnert A, Lewellen B, Wright J, Mingarelli M, Corral CA, Schneider JE, Plein S, Newby DE, Welch A, Miyaoka R, Vandenberghe S, Tavares AAS. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision, and reproducibility: a multicenter study. J Nucl Med. 2020 Mar;61(3):461-8.